14 resultados para sterol homeostasis

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxysterol binding protein (OSBP) and its homologs have been shown to regulate lipid metabolism and vesicular transport. However, the exact molecular function of individual OSBP homologs remains uncharacterized. Here we demonstrate that the yeast OSBP homolog, Osh6p, bound phosphatidic acid and phosphoinositides via its N-terminal half containing the conserved OSBP-related domain (ORD). Using a green fluorescent protein fusion chimera, Osh6p was found to localize to the cytosol and patch-like or punctate structures in the vicinity of the plasma membrane. Further examination by domain mapping demonstrated that the N-terminal half was associated with FM4-64 positive membrane compartments; however, the C-terminal half containing a putative coiled-coil was localized to the nucleoplasm. Functional analysis showed that the deletion of OSH6 led to a significant increase in total cellular ergosterols, whereas OSH6 overexpression caused both a significant decrease in ergosterol levels and resistance to nystatin. Oleate incorporation into sterol esters was affected in OSH6 overexpressing cells. However, Lucifer yellow internalization, and FM4-64 uptake and transport were unaffected in both OSH6 deletion and overexpressing cells. Furthermore, osh6 Delta exhibited no defect in carboxypeptidase Y transport and maturation. Lastly, we demonstrated that both the conserved ORD and the putative coiled-coil motif were indispensable for the in vivo function of Osh6p. These data suggest that Osh6p plays a role primarily in regulating cellular sterol metabolism, possibly stero transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Niemann Pick C1 protein localizes to late endosomes and plays a key role in the intracellular transport of cholesterol in mammalian cells. Cholesterol and other lipids accumulate in a lysosomal or late endosomal compartment in cells lacking normal NPC1 function. Other than accumulation of lipids, defects in lysosomal retroendocytosis, sorting of a multifunctional receptor and endosomal movement have also been detected in NPC1 mutant cells. Ncr1p is an ortholog of NPC1 in the budding yeast Saccharomyces cerevisiae. In this study, we show that Ncr1p is a vacuolar membrane protein that transits through the biosynthetic vacuolar protein sorting pathway, and that it can be solubilized by Triton X-100 at 4 degreesC. Using well-established assays, we demonstrate that the absence of Ncr1p had no effect on fluid phase and receptor- mediated endocytosis, biosynthetic delivery to the vacuole, retrograde transport from endosome to Golgi and ubiquitin- and nonubiquitin-dependent multivesicular body sorting. We conclude that Ncr1p does not have an essential role in known endocytic transport pathways in yeast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The staggerer mice carry a deletion in the RORalpha gene and have a prolonged humoral response, overproduce inflammatory cytokines, and are immunodeficient. Furthermore, the staggerer mice display lowered plasma apoA-I/-II, decreased plasma high density lipoprotein cholesterol and triglycerides, and develop hypo-alpha-lipoproteinemia and atherosclerosis. However, relatively little is known about RORalpha in the context of target tissues, target genes, and lipid homeostasis. For example, RORalpha is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for similar to40% of total body weight and 50% of energy expenditure. This lean tissue is a primary site of glucose disposal and fatty acid oxidation. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. In particular, the role of RORalpha in skeletal muscle metabolism has not been investigated, and the contribution of skeletal muscle to the ROR-/- phenotype has not been resolved. We utilize ectopic dominant negative RORalpha expression in skeletal muscle cells to understand the regulatory role of RORs in this major mass peripheral tissue. Exogenous dominant negative RORalpha expression in skeletal muscle cells represses the endogenous levels of RORalpha and -gamma mRNAs and ROR-dependent gene expression. Moreover, we observed attenuated expression of many genes involved in lipid homeostasis. Furthermore, we show that the muscle carnitine palmitoyltransferase-1 and caveolin-3 promoters are directly regulated by ROR and coactivated by p300 and PGC-1. This study implicates RORs in the control of lipid homeostasis in skeletal muscle. In conclusion, we speculate that ROR agonists would increase fatty acid catabolism in muscle and suggest selective activators of ROR may have therapeutic utility in the treatment of obesity and atherosclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the well-characterised role of sonic hedgehog (Shh) in promoting interfollicular basal cell proliferation and hair follicle downgrowth, the role of hedgehog signalling during epidermal stem cell fate remains largely uncharacterised. In order to determine whether the three vertebrate hedgehog molecules play a role in regulating epidermal renewal we overexpressed sonic (Shh), desert (Dhh) and Indian (Ihh) hedgehog in the basal cells of mouse skin under the control of the human keratin 14 promoter. We observed no overt epidermal morphogenesis phenotype in response to Ihh overexpression, however Dhh overexpression resulted in a range of embryonic and adult skin manifestations indistinguishable from Shh overexpression. Two distinct novel phenotypes were observed amongst Shh and Dhh transgenics, one exhibiting epidermal progenitor cell hyperplasia with the other displaying a complete loss of epidermal tissue renewal indicating deregulation of stem cell activity. These data suggest that correct temporal regulation of hedgehog activity is a key factor in ensuring epidermal stem cell maintenance. In addition, we observed Shh and Dhh transgenic skin from both phenotypes developed lesions reminiscent of human basal cell carcinoma (BCC), indicating that BCCs can be generated despite the loss of much of the proliferative (basal) compartment. These data suggest the intriguing possibility that BCC can arise outside the stem cell population. Thus the elucidation of Shh (and Dhh) target gene activation in the skin will likely identify those genes responsible for increasing the proliferative potential of epidermal basal cells and the mechanisms involved in regulating epidermal stem cell fate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The yeast genome encodes seven oxysterol binding protein homologs, Osh1p-Osh7p, which have been implicated in regulating intracellular lipid and vesicular transport. Here, we show that both Osh6p and Osh7p interact with Vps4p, a member of the AAA ( ATPases associated with a variety of cellular activities) family. The coiled-coil domain of Osh7p was found to interact with Vps4p in a yeast two-hybrid screen and the interaction between Osh7p and Vps4p appears to be regulated by ergosterol. Deletion of VPS4 induced a dramatic increase in the membrane-associated pools of Osh6p and Osh7p and also caused a decrease in sterol esterification, which was suppressed by overexpression of OSH7. Lastly, overexpression of the coiled-coil domain of Osh7p (Osh7pCC) resulted in a multi-vesicular body sorting defect, suggesting a dominant negative role of Osh7pCC possibly through inhibiting Vps4p function. Our data suggest that a common mechanism may exist for AAA proteins to regulate the membrane association of yeast OSBP proteins and that these two protein families may function together to control subcellular lipid transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell deletion is a physiological process for the development and maintenance of tissue homeostasis in metazoa. This is mainly achieved by the induction of various forms of programmed cell death followed by the recognition and removal of the targeted cells by phagocytes. In this review, we will discuss cell deletion in relation to the development and function of the innate immune system, particularly of the mononuclear phagocyte system (MPS), its ontogeny and potential role in tissue remodeling in the embryo and adult. Ongoing studies are addressing the roles of professional phagocytes of the MPS and neighboring tissue cells in dying cell removal, and candidate molecules that might attract mononuclear phagocytes to the dying cells. The potential phagocyte must discriminate between living and dying cells; current concepts for this discrimination derive from the observation of newly exposed ligands on the dying cells and new evidence for direct inhibition of uptake by viable cells.