14 resultados para statistical softwares
em University of Queensland eSpace - Australia
Resumo:
Three main models of parameter setting have been proposed: the Variational model proposed by Yang (2002; 2004), the Structured Acquisition model endorsed by Baker (2001; 2005), and the Very Early Parameter Setting (VEPS) model advanced by Wexler (1998). The VEPS model contends that parameters are set early. The Variational model supposes that children employ statistical learning mechanisms to decide among competing parameter values, so this model anticipates delays in parameter setting when critical input is sparse, and gradual setting of parameters. On the Structured Acquisition model, delays occur because parameters form a hierarchy, with higher-level parameters set before lower-level parameters. Assuming that children freely choose the initial value, children sometimes will miss-set parameters. However when that happens, the input is expected to trigger a precipitous rise in one parameter value and a corresponding decline in the other value. We will point to the kind of child language data that is needed in order to adjudicate among these competing models.
Resumo:
OBJECTIVE: To describe variation in all cause and selected cause-specific mortality rates across Australia. METHODS: Mortality and population data for 1997 were obtained from the Australian Bureau of Statistics. All cause and selected cause-specific mortality rates were calculated and directly standardised to the 1997 Australian population in 5-year age groups. Selected major causes of death included cancer, coronary artery disease, cerebrovascular disease, diabetes, accidents and suicide. Rates are reported by statistical division, and State and Territory. RESULTS: All cause age-standardised mortality was 6.98 per 1000 in 1997 and this varied 2-fold from a low in the statistical division of Pilbara, Western Australia (5.78, 95% confidence interval 5.06-6.56), to a high in Northern Territory-excluding Darwin (11.30, 10.67-11.98). Similar mortality variation (all p<0.0001) exists for cancer (1.01-2.23 per 1000) and coronary artery disease (0.99-2.23 per 1000), the two biggest killers. Larger variation (all p<0.0001) exists for cerebrovascular disease (0.7-11.8 per 10,000), diabetes (0.7-6.9 per 10,000), accidents (1.7-7.2 per 10,000) and suicide (0.6-3.8 per 10,000). Less marked variation was observed when analysed by State and Territory. but Northern Territory consistently has the highest age-standardised mortality rates. CONCLUSIONS: Analysed by statistical division, substantial mortality gradients exist across Australia, suggesting an inequitable distribution of the determinants of health. Further research is required to better understand this heterogeneity.
Resumo:
No Abstract
Statistical interaction with quantitative geneticists to enhance impact from plant breeding programs
Resumo:
Now that some of the genes involved in asthma and allergy have been identified, interest is turning to how genetic predisposition interacts with exposure to environmental risk factors. These questions are best answered by studies in which both genotypes and other risk factors are measured, but even simpler studies, in which family history is used as a proxy for genotype, have made suggestive findings. For example, early breast feeding may increase the risk of allergic disease in genetically susceptible children, and decrease the risk of 'sporadic' allergy. This review also addresses the overall importance of genetic causes of allergic disease in the general population.
Resumo:
This article reports on the results of a study undertaken by the author together with her research assistant, Heather Green. The study collected and analysed data from all disciplinary tribunal decisions heard in Queensland since 1930 in an attempt to provide empirical information which has previously been lacking. This article will outline the main features of the disciplinary system in Queensland, describe the research methodology used in the present study and then report on some findings from the study. Reported findings include a profile of solicitors who have appeared before a disciplinary hearing, the types of matters which have attracted formal discipline and the types of orders made by the tribunal. Much of the data is then presented on a time scale so as to reveal any changes over time.
Resumo:
The monitoring of infection control indicators including hospital-acquired infections is an established part of quality maintenance programmes in many health-care facilities. However, surveillance data use can be frustrated by the infrequent nature of many infections. Traditional methods of analysis often provide delayed identification of increasing infection occurrence, placing patients at preventable risk. The application of Shewhart, Cumulative Sum (CUSUM) and Exponentially Weighted Moving Average (EWMA) statistical process control charts to the monitoring of indicator infections allows continuous real-time assessment. The Shewhart chart will detect large changes, while CUSUM and EWMA methods are more suited to recognition of small to moderate sustained change. When used together, Shewhart and EWMA methods are ideal for monitoring bacteraemia and multiresistant organism rates. Shewhart and CUSUM charts are suitable for surgical infection surveillance.
Resumo:
This paper proposes a template for modelling complex datasets that integrates traditional statistical modelling approaches with more recent advances in statistics and modelling through an exploratory framework. Our approach builds on the well-known and long standing traditional idea of 'good practice in statistics' by establishing a comprehensive framework for modelling that focuses on exploration, prediction, interpretation and reliability assessment, a relatively new idea that allows individual assessment of predictions. The integrated framework we present comprises two stages. The first involves the use of exploratory methods to help visually understand the data and identify a parsimonious set of explanatory variables. The second encompasses a two step modelling process, where the use of non-parametric methods such as decision trees and generalized additive models are promoted to identify important variables and their modelling relationship with the response before a final predictive model is considered. We focus on fitting the predictive model using parametric, non-parametric and Bayesian approaches. This paper is motivated by a medical problem where interest focuses on developing a risk stratification system for morbidity of 1,710 cardiac patients given a suite of demographic, clinical and preoperative variables. Although the methods we use are applied specifically to this case study, these methods can be applied across any field, irrespective of the type of response.
Resumo:
The effect of number of samples and selection of data for analysis on the calculation of surface motor unit potential (SMUP) size in the statistical method of motor unit number estimates (MUNE) was determined in 10 normal subjects and 10 with amyotrophic lateral sclerosis (ALS). We recorded 500 sequential compound muscle action potentials (CMAPs) at three different stable stimulus intensities (10–50% of maximal CMAP). Estimated mean SMUP sizes were calculated using Poisson statistical assumptions from the variance of 500 sequential CMAP obtained at each stimulus intensity. The results with the 500 data points were compared with smaller subsets from the same data set. The results using a range of 50–80% of the 500 data points were compared with the full 500. The effect of restricting analysis to data between 5–20% of the CMAP and to standard deviation limits was also assessed. No differences in mean SMUP size were found with stimulus intensity or use of different ranges of data. Consistency was improved with a greater sample number. Data within 5% of CMAP size gave both increased consistency and reduced mean SMUP size in many subjects, but excluded valid responses present at that stimulus intensity. These changes were more prominent in ALS patients in whom the presence of isolated SMUP responses was a striking difference from normal subjects. Noise, spurious data, and large SMUP limited the Poisson assumptions. When these factors are considered, consistent statistical MUNE can be calculated from a continuous sequence of data points. A 2 to 2.5 SD or 10% window are reasonable methods of limiting data for analysis. Muscle Nerve 27: 320–331, 2003