2 resultados para split luciferase complementation assay
em University of Queensland eSpace - Australia
Resumo:
A primary haplotype (H1) of the microtubule-associated protein Tau (MAPT) gene is associated with Parkinson's disease (PD). However, the mechanism for disease susceptibility remains unknown. We examined the promoter region of MAPT and identified single nucleotide polymorphisms and insertions of 1 to 11 nucleotides. These polymorphisms corresponded to the previously characterized haplotypes, H1 and H2, as well as a novel variant of the H1 haplotype, H1'. As observed in other studies, we demonstrated a significant association with the H1/H1 promoter genotype and PD in a cohort of 206 idiopathic late-onset cases. This is in contrast with a panel of 13 early-onset PD patients, for whom we did not detect any mutations in MAPT. By examining single nucleotide polymorphisms in adjacent genes, we showed that linkage disequilibrium does not extend beyond the MAPT haplotype to neighboring genes. To define the mechanism of disease susceptibility, we examined the transcriptional activity of the promoter haplotypes using a luciferase reporter assay. We demonstrated in two human cell lines, SK-N-MC and 293, that the H1 haplotype was more efficient at driving gene expression than the H2 haplotype. Our data suggest that an increase in expression of the MAPT gene is a susceptibility factor in idiopathic PD.
Resumo:
In humans, a polymorphic gene encodes the drug-metabolizing enzyme NATI (arylamine N-acetyltransferase Type 1), which is widely expressed throughout the body. While the protein-coding region of NATI is contained within a single exon, examination of the human EST (expressed sequence tag) database at the NCBI revealed the presence of nine separate exons, eight of which were located in the 5'non-coding region of NATI. Differential splicing produced at least eight unique mRNA isoforms that could be grouped according to the location of the first exon, which suggested that NATI expression occurs from three alternative promoters. Using RT (reverse transcriptase)-PCR, we identified one major transcript in various epithelial cells derived from different tissues. In contrast, multiple transcripts were observed in blood-derived cell lines (CEM, THP-1 and Jurkat), with a novel variant, not identified in the EST database, found in CEM cells only. The major splice variant increased gene expression 9-11-fold in a luciferase reporter assay, while the other isoforrns were similar or slightly greater than the control. We examined the upstream region of the most active splice variant in a promoter-reporter assay, and isolated a 257 bp sequence that produced maximal promoter activity. This sequence lacked a TATA box, but contained a consensus Sp1 site and a CAAT box, as well as several other putative transcription-factor-binding sites. Cell-specific expression of the different NATI transcripts may contribute to the variation in NATI activity in vivo.