14 resultados para spiny dogfish
em University of Queensland eSpace - Australia
Resumo:
Since the landmark contributions of Homer Smith and co-workers in the 1930s there has been a considerable advance in our knowledge regarding the osmoregulatory strategy of elasmobranch fish. Smith recognised that urea was retained in the body fluids as part of the 'osmoregulatory ballast' of elasmobranch fish so that body fluid osmolality is raised to a level that is iso- or slightly hyper-osmotic to that of the surrounding medium. From studies at that time he also postulated that many marine dwelling elasmobranchs were not capable of adaptation to dilute environments. However, more recent investigations have demonstrated that, at least in some species, this may not be the case. Gradual acclimation of marine dwelling elasmobranchs to varying environmental salinities under laboratory conditions has demonstrated that these fish do have the capacity to acclimate to changes in salinity through independent regulation of Na+, Cl- and urea levels. This suggests that many of the presumed stenohaline marine elasmobranchs could in fact be described as partially euryhaline. The contributions of Thomas Thorson in the 1970s demonstrated the osmoregulatory strategy of a fully euryhaline elasmobranch, the bull shark, Carcharhinus leucas, and more recent investigations have examined the mechanisms behind this strategy in the euryhaline elasmobranch, Dasyatis sabina. Both partially euryhaline and fully euryhaline species utilise the same physiological processes to control urea, Na+ and Cl- levels within the body fluids. The role of the gills, kidney, liver, rectal gland and drinking process is discussed in relation to the endocrine control of urea, Na+ and Cl- levels as elasmobranchs acclimate to different environmental salinities. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Bull sharks (Carcharhinus leucas) were captured across a salinity gradient from freshwater (FW) to seawater (SW). Across all salinities, C leucas were hyperosmotic to the environment. Plasma osmolarity in FW-captured animals (642 +/- 7 mosM) was significantly reduced compared to SW-captured animals (1067 +/- 21 mosM). In FW animals, sodium, chloride and urea were 208 +/- 3, 203 +/- 3 and 192 +/- 2 mmol l(-1), respectively. Plasma sodium, chloride and urea in SW-captured C leucas were 289 +/- 3, 296 +/- 6 and 370 +/- 10 mmol l(-1), respectively. The increase in plasma osmolarity between FW and SW was not linear. Between FW (3 mosM) and 24%o SW (676 mosM), plasma osmolarity increased by 22% or 0.92% per 1parts per thousand rise in salinity. Between 24%o and 33parts per thousand, plasma osmolarity increased by 33% or 4.7% per 1 parts per thousand rise in salinity, largely due to a sharp increase in plasma urea between 28parts per thousand and 33parts per thousand. C. leucas moving between FW and SW appear to be faced with three major osmoregulatory challenges, these occur between 0-10parts per thousand, 11-20parts per thousand and 21-33parts per thousand. A comparison between C leucas captured in FW and estuarine environments (20-28%o) in the Brisbane River revealed no difference in the mass of rectal glands between these animals. However, a comparison of rectal gland mass between FW animals captured in the Brisbane River and Rio San Juan/Lake Nicaragua showed that animals in the latter system had a significantly smaller rectal gland mass at a given length than animals in the Brisbane River. The physiological challenges and mechanisms required for C leucas moving between FW and SW, as well as the ecological implications of these data are discussed. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Sperm ultrastructure in three representative species of the marine bivalve family Spondylidae (spiny or thorny oysters) is examined and compared with available data on other bivalves, especially other families of the subclass Pteriomorphia. Spondylid spermatozoa are of the externally fertilizing aquasperm. type (ect-aquasperm). The acrosomal vesicle is conical with a deep basal invagination extending almost the full length of the vesicle. Vesicle contents are divisible into an inner, highly electron-dense anterior layer and a less dense posterior layer. The anterior layer is folded back on itself posteriorly and exhibits radiating plates (best developed peripherally). The vesicle rests on, and is partially embedded in, an extensive granular deposit of subacrosomal. material at the nuclear apex. This deposit extends partly into acrosomal vesicle invagination and also fills a broad depression in the anterior of the nucleus. No pre-formed axial rod (perforatorium) is present. The nucleus is round-pyriform and its contents coarsely fibrogranular. At the base of the nucleus, four broad depressions partially accommodate the midpiece mitochondria. The midpiece consists the four spherical mitochondria and the proximal and distal centrioles. The centrioles are arranged at approximately 90degrees to each other, and each consists of nine, angularly-oriented, microtubular triplets embedded in a granular matrix. A short, periodically banded rootlet connects the proximal centriole to the nuclear fossa, whereas the distal centriole, which forms the basal body to the flagellar axoneme, is anchored to the plasma membrane by nine terminally forked satellite fibres. Extensive deposits of putative glycogen rosettes surround the centrioles and mitochondria. The flagellum consists of a 9+2 axoneme sheathed by the plasma membrane. Spondylid spermatozoa strongly resemble those of the Pectinidae, further confirming the traditional view (based on comparative anatomy and shell morphology) of a close relationship between the Spondylidae and the Pectinidae. Differences in acrosomal shape and dimensions were noted between the three species examined, indicating potential taxonomic utility for comparative sperm ultrastructure within the Spondylidae.
Resumo:
In the European lesser-spotted dogfish Scyliorhinus canicula, rectal gland mass in mg (M-Rg) followed the allometric relationship: M-Rg = 1.15 M-0.68, where M is body mass (g). The concept of allometric scaling is an important consideration in studies investigating the function Of osmoregulatory organs. (C) 2003 the Fisheries Society of the British Isles.
Resumo:
Since the discovery in the 1970s that dendritic abnormalities in cortical pyramidal neurons are the most consistent pathologic correlate of mental retardation, research has focused on how dendritic alterations are related to reduced intellectual ability. Due in part to obvious ethical problems and in part to the lack of fruitful methods to study neuronal circuitry in the human cortex, there is little data about the microanatomical contribution to mental retardation. The recent identification of the genetic bases of some mental retardation associated alterations, coupled with the technology to create transgenic animal models and the introduction of powerful sophisticated tools in the field of microanatomy, has led to a growth in the studies of the alterations of pyramidal cell morphology in these disorders. Studies of individuals with Down syndrome, the most frequent genetic disorder leading to mental retardation, allow the analysis of the relationships between cognition, genotype and brain microanatomy. In Down syndrome the crucial question is to define the mechanisms by which an excess of normal gene products, in interaction with the environment, directs and constrains neural maturation, and how this abnormal development translates into cognition and behaviour. In the present article we discuss mainly Down syndrome-associated dendritic abnormalities and plasticity and the role of animal models in these studies. We believe that through the further development of such approaches, the study of the microanatomical substrates of mental retardation will contribute significantly to our understanding of the mechanisms underlying human brain disorders associated with mental retardation. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Whole-cell patch clamp recordings were made from pyramidal neurons in the rat lateral amygdala (LA). Synaptic currents were evoked by stimulating in either the external capsule (ec), internal capsule (ic) or basolateral nucleus (BLA). Stimulation of either the ic, ec or BLA evoked a glutamatergic excitatory synaptic current (EPSC) which was mediated by both non-NMDA and NMDA (N-methyl-D-aspartic acid) receptors, The ratio of the amplitude of the NMDA receptor-mediated component measured at +40 mV to the amplitude of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) component measured at -60 mV was similar regardless of whether EPSCs were evoked in the ec, ic or BLA. At resting membrane potentials, excitatory synaptic potentials evoked from either the ec or putative thalamic inputs were unaffected by application of the NMDA receptor antagonist APV. Spontaneous glutamatergic currents had two components to their decay phase. The slow component was selectively blocked by the NMDA receptor antagonist D-APV, indicating that AMPA and NMDA receptors are colocalized in spiny neurons. We conclude that pyramidal cells of the LA receive convergent inputs from the cortex, thalamus and basal nuclei. At all inputs, both AMPA/kainate and NMDA-type receptors are active and colocalized in the postsynaptic density.
Resumo:
We quantified differences in the abundance and diversity of bird species at inherent (naturally occurring) and induced (human-created) edges in the Murray Mallee, South Australia, to explore the effects of anthropogenic landscape modification. Bird species were classified into edge response categories based on numerical differences in abundance between the edge and interior of habitat patches. 'Open-country' species (e.g. Australian Magpie and Little Raven) increased in abundance near induced edges, but were rarely recorded > 200 m into patch interiors or at inherent edges. The Australian Ringneck, Red Wattlebird, Spiny-cheeked Honeyeater, Singing Honeyeater and White-eared Honeyeater increased in abundance near each inherent edge and were classified as 'edge-users'. However, their responses at induced edges varied between sites. The Yellow-plumed Honeyeater, Spotted Pardalote, White-browed Babbler, Chestnut Quail-thrush and Southern Scrub-robin decreased in abundance near one or more induced edges and were classified as 'edge-avoiders' at these sites. The Yellow-plumed Honeyeater, Spotted Pardalote, Chestnut Quail-thrush and Southern Scrub-robin are considered mallee habitat specialists in eastern Australia. These species may be particularly affected by anthropogenic modification of mallee vegetation.
Resumo:
In this study, we characterize the electrophysiological and morphological properties of spiny principal neurons in the rat lateral amygdala using whole cell recordings in acute brain slices. These neurons exhibited a range of firing properties in response to prolonged current injection. Responses varied from cells that showed full spike frequency adaptation, spiking three to five times, to those that showed no adaptation. The differences in firing patterns were largely explained by the amplitude of the afterhyperpolarization (AHP) that followed spike trains. Cells that showed full spike frequency adaptation had large amplitude slow AHPs, whereas cells that discharged tonically had slow AHPs of much smaller amplitude. During spike trains, all cells showed a similar broadening of their action potentials. Biocytin-filled neurons showed a range of pyramidal-like morphologies, differed in dendritic complexity, had spiny dendrites, and differed in the degree to which they clearly exhibited apical versus basal dendrites. Quantitative analysis revealed no association between cell morphology and firing properties. We conclude that the discharge properties of neurons in the lateral nucleus, in response to somatic current injections, are determined by the differential distribution of ionic conductances rather than through mechanisms that rely on cell morphology.
Resumo:
K(V)LQT1 (K(V)LQ1) is a voltage-gated K+ channel essential for repolarization of the heart action potential that is defective in cardiac arrhythmia. The channel is inhibited by the chromanol 293B, a compound that blocks cAMP-dependent electrolyte secretion in rat and human colon, therefore suggesting expression of a similar type of K+ channel in the colonic epithelium. We now report cloning and expression of K(V)LQT1 from rat colon. Overlapping clones identified by cDNA-library screening were combined to a full length cDNA that shares high sequence homology to K(V)LQT1 cloned from other species. RT-PCR analysis of rat colonic musoca demonstrated expression of K(V)LQT1 in crypt cells and surface epithelium. Expression of rK(V)LQT1 in Xenopus oocytes induced a typical delayed activated K+ current. that was further activated by increase of intracellular cAMP but not Ca2+ and that was blocked by the chromanol 293B. The same compound blocked a basolateral cAMP-activated K+ conductance in the colonic mucosal epithelium and inhibited whole cell K+ currents in patch-clamp experiments on isolated colonic crypts. We conclude that K(V)QT1 is forming an important component of the basolateral cAMP-activated K+ conductance in the colonic epithelium and plays a crucial role in diseases like secretory diarrhea and cystic fibrosis.
Resumo:
The impact of sex-biased fishing and marine reserve protection on the mud crab Scylla serrata was examined by comparing the catch rates (catch-per-unit-effort, CPUE), mean size, sex ratios and movement of crabs in 2 coastal marine reserves (1.9 and 5.7 km(2)) and 4 fished non-reserve sites in subtropical Australia. Five years after closure, both marine reserves supported higher catch rates and a larger mean size of S. serrata than non-reserve sites. Males dominated catches of S. serrata in both marine reserves, where CPUE was at least twice as high within the reserves compared to non-reserve sites. Male crabs were also 10% larger in the reserves compared to adjacent fished areas, and of the total male catch, over 70% were equal to or greater than legal size compared to less than 50% outside the reserves. The sex ratio of S. serrata was skewed towards females in all nonreserve sites, which was most likely a result of the ban on taking female S. serrata in Moreton Bay. As only male crabs of >= 15 cm CW made up the S. serrata fishery in Moreton Bay, sex ratios of mature male and female crabs were examined, revealing a strong skew (2:1) towards mature males in both marine reserves. Of the 472 S. serrata captured in this study, 338 were tagged in the reserves in order to document movement of the crabs between the reserve and non-reserve sites. Of the 37 recaptured crabs, 73% were recorded inside the reserves, with some spillover (i.e. cross-boundary movement) of crabs recorded in fished areas. This study demonstrates the effectiveness of small (< 6 km(2)) marine reserves for sex-biased exploited fisheries species.
Resumo:
Plasma urea levels and hepatic urea production in the euryhaline bull shark, Carcharhinus leucas, acclimated to freshwater and seawater environments were measured. It was found that plasma urea concentration increased with salinity and that this increase was, in part, the result of a significant increase in hepatic production of urea. This study provides direct evidence that hepatic production of urea plays an important role in the osmoregulatory strategy of C. leucas.
Resumo:
The present study has examined expression and circulating levels of C-type natriuretic peptide (CNP) in the euryhaline bull shark, Carcharhinus leucas. Complementary DNA and deduced amino acid sequence for CNP in C leucas were determined by RACE methods. Homology of CNP amino acid sequence in C. leucas was high both for proCNP and for mature CNP when compared with previously identified elasmobranch CNPs. Mature CNP sequence in C. leucas was identical to that in Triakis seyllia and Seyliorhinus canicula. Levels of expression of CNP mRNA were significantly decreased in the atrium but did not change in either the brain or ventricle following acclimation to a SW environment. However, circulating levels of CNP significantly increased from 86.0 +/- 7.9 fmol ml(-1) in FW to 144.9 +/- 19.5 fmol ml(-1) in SW. The results presented demonstrate that changes in environmental salinity influences both synthesis of CNP from the heart and also circulating levels in C. leucas. Potential stimulus for release and modes of action are discussed. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The goals of this study are to determine relationships between synaptogenesis and morphogenesis within the mushroom body calyx of the honeybee Apis mellifera and to find out how the microglomerular structure characteristic for the mature calyx is established during metamorphosis. We show that synaptogenesis in the mushroom body calycal neuropile starts in early metamorphosis (stages P1-P3), before the microglomerular structure of the neuropile is established. The initial step of synaptogenesis is characterized by the rare occurrence of distinct synaptic contacts. A massive synaptogenesis starts at stage P5, which coincides with the formation of microglomeruli, structural units of the calyx that are composed of centrally located presynaptic boutons surrounded by spiny postsynaptic endings. Microglomeruli are assembled either via accumulation of fine postsynaptic processes around preexisting presynaptic boutons or via ingrowth of thin neurites of presynaptic neurons into premicroglomeruli, tightly packed groups of spiny endings. During late pupal stages (P8-P9), addition of new synapses and microglomeruli is likely to continue. Most of the synaptic appositions formed there are made by boutons (putative extrinsic mushroom body neurons) into small postsynaptic profiles that do not exhibit presynaptic specializations (putative intrinsic mushroom body neurons). Synapses between presynaptic boutons characteristic of the adult calyx first appear at stage P8 but remain rare toward the end of metamorphosis. Our observations are consistent with the hypothesis that most of the synapses established during metamorphosis provide the structural basis for afferent information flow to calyces, whereas maturation of local synaptic circuitry is likely to occur after adult emergence.