28 resultados para spatial resolution
em University of Queensland eSpace - Australia
Resumo:
An anaerobic landfill leachate bioreactor was operated with crystalline cellulose and sterile landfill leacbate until a steady state was reached. Cellulose hydrolysis, acidogenesis, and methanogenesis were measured. Microorganisms attached to the cellulose surfaces were hypothesized to be the cellulose hydrolyzers. 16S rRNA gene clone libraries were prepared from this attached fraction and also from the mixed fraction (biomass associated with cellulose particles and in the planktonic phase). Both clone libraries were dominated by Firmicutes phylum sequences (100% of the attached library and 90% of the mixed library), and the majority fell into one of five lineages of the clostridia. Clone group 1 (most closely related to Clostridium stercorarium), clone group 2 (most closely related to Clostridium thermocellum), and clone group 5 (most closely related to Bacteroides cellulosolvens) comprised sequences in Clostridium group III. Clone group 3 sequences were in Clostridium group XIVa (most closely related to Clostridium sp. strain XB90). Clone group 4 sequences were affiliated with a deeply branching clostridial lineage peripherally associated with Clostridium group VI. This monophyletic group comprises a new Clostridium cluster, designated cluster VIa. Specific fluorescence in situ hybridization (FISH) probes for the five groups were designed and synthesized, and it was demonstrated in FISH experiments that bacteria targeted by the probes for clone groups 1, 2, 4, and 5 were very abundant on the surfaces of the cellulose particles and likely the key cellulolytic microorganisms in the landfill bioreactor. The FISH probe for clone group 3 targeted cells in the planktonic phase, and these organisms were hypothesized to be glucose fermenters.
Resumo:
Socioeconomic considerations should have an important place in reserve design, Systematic reserve-selection tools allow simultaneous optimization for ecological objectives while minimizing costs but are seldom used to incorporate socioeconomic costs in the reserve-design process. The sensitivity of this process to biodiversity data resolution has been studied widely but the issue of socioeconomic data resolution has not previously been considered. We therefore designed marine reserves for biodiversity conservation with the constraint of minimizing commercial fishing revenue losses and investigated how economic data resolution affected the results. Incorporating coarse-resolution economic data from official statistics generated reserves that were only marginally less costly to the fishery than those designed with no attempt to minimize economic impacts. An intensive survey yielded fine-resolution data that, when incorporated in the design process, substantially reduced predicted fishery losses. Such an approach could help minimize fisher displacement because the least profitable grounds are selected for the reserve. Other work has shown that low-resolution biodiversity data can lead to underestimation of the conservation value of some sites, and a risk of overlooking the most valuable areas, and we have similarly shown that low-resolution economic data can cause underestimation of the profitability of some sites and a risk of inadvertently including these in the reserve. Detailed socioeconomic data are therefore an essential input for the design of cost-effective reserve networks.
Resumo:
Government agencies responsible for riparian environments are assessing the combined utility of field survey and remote sensing for mapping and monitoring indicators of riparian zone health. The objective of this work was to determine if the structural attributes of savanna riparian zones in northern Australia can be detected from commercially available remotely sensed image data. Two QuickBird images and coincident field data covering sections of the Daly River and the South Alligator River - Barramundie Creek in the Northern Territory were used. Semi-variograms were calculated to determine the characteristic spatial scales of riparian zone features, both vegetative and landform. Interpretation of semi-variograms showed that structural dimensions of riparian environments could be detected and estimated from the QuickBird image data. The results also show that selecting the correct spatial resolution and spectral bands is essential to maximize the accuracy of mapping spatial characteristics of savanna riparian features. The distribution of foliage projective cover of riparian vegetation affected spectral reflectance variations in individual spectral bands differently. Pan-sharpened image data enabled small-scale information extraction (< 6 m) on riparian zone structural parameters. The semi-variogram analysis results provide the basis for an inversion approach using high spatial resolution satellite image data to map indicators of savanna riparian zone health.
Resumo:
Government agencies responsible for riparian environments are assessing the combined utility of field survey and remote sensing for mapping and monitoring indicators of riparian zone condition. The objective of this work was to compare the Tropical Rapid Appraisal of Riparian Condition (TRARC) method to a satellite image based approach. TRARC was developed for rapid assessment of the environmental condition of savanna riparian zones. The comparison assessed mapping accuracy, representativeness of TRARC assessment, cost-effectiveness, and suitability for multi-temporal analysis. Two multi-spectral QuickBird images captured in 2004 and 2005 and coincident field data covering sections of the Daly River in the Northern Territory, Australia were used in this work. Both field and image data were processed to map riparian health indicators (RHIs) including percentage canopy cover, organic litter, canopy continuity, stream bank stability, and extent of tree clearing. Spectral vegetation indices, image segmentation and supervised classification were used to produce RHI maps. QuickBird image data were used to examine if the spatial distribution of TRARC transects provided a representative sample of ground based RHI measurements. Results showed that TRARC transects were required to cover at least 3% of the study area to obtain a representative sample. The mapping accuracy and costs of the image based approach were compared to those of the ground based TRARC approach. Results proved that TRARC was more cost-effective at smaller scales (1-100km), while image based assessment becomes more feasible at regional scales (100-1000km). Finally, the ability to use both the image and field based approaches for multi-temporal analysis of RHIs was assessed. Change detection analysis demonstrated that image data can provide detailed information on gradual change, while the TRARC method was only able to identify more gross scale changes. In conclusion, results from both methods were considered to complement each other if used at appropriate spatial scales.
Resumo:
On 7 February 2000 an atypical orange discolouration of snowfields in the central Southern Alps, New Zealand occurred following the passage of a cold front. Analysis of snow samples identified fine orangey-brown dust mixed with much coarser grey dust. Air parcel forward trajectories from dust sources in southern and central Australia, where dust storms were reported on 4 February 2000, were computed to identify the deposits source. Geochemical analyses of the dust deposit using 26 trace elements, unaffected by regional air pollution and gravitational sorting, indicate that 20% of the dust was sourced from western New South Wales, with 45% from the eastern Eyre Peninsula of South Australia and the remaining 35% was local New Zealand dust. This provenancing approach provides a spatial resolution of long travelled dust sourcing not previously achieved. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Reasons for performing study: Obtaining magnetic resonance images of the inner hoof wall tissue at the microscopic level would enable early accurate diagnosis of laminitis and therefore more effective therapy. Objectives: To optimise magnetic resonance imaging (MRI) parameters in order to obtain the highest possible resolution of the structures beneath the equine hoof wall. Methods: Magnetic resonance microscopy (MRM) was performed in front feet from 6 cadaver horses using T-2-weighted fast spin echo (FSE-T-2), and T-1-weighted gradient echo (GRE-T-1) sequences. Results: In T-2 weighted FSE images most of the stratum medium showed no signal, however the coronary, terminal and sole papillae were visible. The stratum lamellatum was clearly visible and primary epidermal lamellae could be differentiated from dermal lamellae. Conclusion: Most structures beneath the hoof wall were differentiated. Conventional scanners for diagnostic MRI in horses are low or high field. However this study used ultra-high field scanners currently not available for clinical use. Signal-to-noise ratio (SIN) increases as a function of field strength. An increase of spatial resolution of the image results in a decreased SIN. SIN can also be improved with better coils and the resolution of high field MRI scanners will increase as technology develops and surface array coils become more readily available. Potential relevance: Although MR images with microscopic resolution were obtained ex vivo, this study demonstrates the potential for detection of lamellar pathology as it occurs. Early recognition of the development of laminitis to instigate effective therapy at an earlier stage and may improve the outcome for laminitic horses. Clinical MR is now readily available at 3 T, while 4 T, 7 T and 9 T systems are being used for human whole body applications.
Resumo:
Remotely sensed data have been used extensively for environmental monitoring and modeling at a number of spatial scales; however, a limited range of satellite imaging systems often. constrained the scales of these analyses. A wider variety of data sets is now available, allowing image data to be selected to match the scale of environmental structure(s) or process(es) being examined. A framework is presented for use by environmental scientists and managers, enabling their spatial data collection needs to be linked to a suitable form of remotely sensed data. A six-step approach is used, combining image spatial analysis and scaling tools, within the context of hierarchy theory. The main steps involved are: (1) identification of information requirements for the monitoring or management problem; (2) development of ideal image dimensions (scene model), (3) exploratory analysis of existing remotely sensed data using scaling techniques, (4) selection and evaluation of suitable remotely sensed data based on the scene model, (5) selection of suitable spatial analytic techniques to meet information requirements, and (6) cost-benefit analysis. Results from a case study show that the framework provided an objective mechanism to identify relevant aspects of the monitoring problem and environmental characteristics for selecting remotely sensed data and analysis techniques.
Resumo:
We present high spatial resolution ion-microprobe rare earth element (REE) data for discrete growth phases of complex polyphase zircons from early Archaean Amitsoq gneisses, outer Godthabsfjord, SW Greenland. In Matsuda diagrams, the two major growth phases, >3.8 Ga cores and ca. 3.65 Ga rims, have steep positive slopes from La to Lu, prominent positive Ce anomalies and negative Eu anomalies that are consistent with growth in a melt. Exceptions to this are non-cathodolurnmescent zircon developed between the cores and rims, sometimes truncating zoning in the cores, and late Archaean prismatic tip overgrowths, both of which exhibit flatter light REE (LREE) patterns and have small or no Eu anomaly, which we interpret as the result of metamorphism and/or small-degree, isolated partial melting. Our data support previous interpretations that the ca. 3.65 Ga zircon phase was generated in a melt, with the >3.8 Ga phase representing either original protolith zircons in a large degree partial melt or inherited zircons in an introduced magma. Regardless which of these two interpretations is correct for these, and similar, rocks in the outer GodthAbsfjord, the 3.65 Ga event will have profoundly affected isotopic systems and obscured beyond recognition any earlier igneous features such as cross-cutting relationships, which may only be assigned a minimum 3.65 Ga age. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
We sought to improve the feasibility of strain rate imaging (SRI) during dobutamine stress echocardiography (DSE) in 56 subjects at low risk of coronary disease. The impact of several SRI changes during acquisition were studied, including: (1) changing from fundamental to harmonic imaging; (2) parallel beam-forming; (3) alteration of spatial resolution and (4) narrow sector acquisition. We assessed SR signal quality, a quantitative measure of signal noise and measurements of SRI. Of 1462 segments evaluated, 6% were uninterpretable at rest and 8% at peak stress. Signal quality was optimised by increasing temporal (p = 0.01) and spatial resolution (p<0.0001 vs. baseline imaging) at rest and peak. Increasing spatial resolution also minimised signal noise (p<0.0001). Inter-observer variability of time to peak SR and peak SR were less with high temporal and spatial resolution. SRI quality can be improved with harmonic imaging and higher temporal resolution but optimisation of spatial resolution is critical. (C) 2004 World Federation for Ultrasound in Medicine Biology.