9 resultados para spatial planning
em University of Queensland eSpace - Australia
Resumo:
This paper investigates how demographic (socioeconomic) and land-use (physical and environmental) data can be integrated within a decision support framework to formulate and evaluate land-use planning scenarios. A case-study approach is undertaken with land-use planning scenarios for a rapidly growing coastal area in Australia, the Shire of Hervey Bay. The town and surrounding area require careful planning of the future urban growth between competing land uses. Three potential urban growth scenarios are put forth to address this issue. Scenario A ('continued growth') is based on existing socioeconomic trends. Scenario B ('maximising rates base') is derived using optimisation modelling of land-valuation data. Scenario C ('sustainable development') is derived using a number of social, economic, and environmental factors and assigning weightings of importance to each factor using a multiple criteria analysis approach. The land-use planning scenarios are presented through the use of maps and tables within a geographical information system, which delineate future possible land-use allocations up until 2021. The planning scenarios are evaluated by using a goal-achievement matrix approach. The matrix is constructed with a number of criteria derived from key policy objectives outlined in the regional growth management framework and town planning schemes. The authors of this paper examine the final efficiency scores calculated for each of the three planning scenarios and discuss the advantages and disadvantages of the three land-use modelling approaches used to formulate the final scenarios.
Resumo:
This paper develops an Internet geographical information system (GIS) and spatial model application that provides socio-economic information and exploratory spatial data analysis for local government authorities (LGAs) in Queensland, Australia. The application aims to improve the means by which large quantities of data may be analysed, manipulated and displayed in order to highlight trends and patterns as well as provide performance benchmarking that is readily understandable and easily accessible for decision-makers. Measures of attribute similarity and spatial proximity are combined in a clustering model with a spatial autocorrelation index for exploratory spatial data analysis to support the identification of spatial patterns of change. Analysis of socio-economic changes in Queensland is presented. The results demonstrate the usefulness and potential appeal of the Internet GIS applications as a tool to inform the process of regional analysis, planning and policy.
Resumo:
Tropical deforestation is the major contemporary threat to global biodiversity, because a diminishing extent of tropical forests supports the majority of the Earth's biodiversity. Forest clearing is often spatially concentrated in regions where human land use pressures, either planned or unplanned, increase the likelihood of deforestation. However, it is not a random process, but often moves in waves originating from settled areas. We investigate the spatial dynamics of land cover change in a tropical deforestation hotspot in the Colombian Amazon. We apply a forest cover zoning approach which permitted: calculation of colonization speed; comparative spatial analysis of patterns of deforestation and regeneration; analysis of spatial patterns of mature and recently regenerated forests; and the identification of local-level hotspots experiencing the fastest deforestation or regeneration. The colonization frontline moved at an average of 0.84 km yr(-1) from 1989 to 2002, resulting in the clearing of 3400 ha yr(-1) of forests beyond the 90% forest cover line. The dynamics of forest clearing varied across the colonization front according to the amount of forest in the landscape, but was spatially concentrated in well-defined 'local hotspots' of deforestation and forest regeneration. Behind the deforestation front, the transformed landscape mosaic is composed of cropping and grazing lands interspersed with mature forest fragments and patches of recently regenerated forests. We discuss the implications of the patterns of forest loss and fragmentation for biodiversity conservation within a framework of dynamic conservation planning.
Resumo:
Data on the occurrence of species are widely used to inform the design of reserve networks. These data contain commission errors (when a species is mistakenly thought to be present) and omission errors (when a species is mistakenly thought to be absent), and the rates of the two types of error are inversely related. Point locality data can minimize commission errors, but those obtained from museum collections are generally sparse, suffer from substantial spatial bias and contain large omission errors. Geographic ranges generate large commission errors because they assume homogenous species distributions. Predicted distribution data make explicit inferences on species occurrence and their commission and omission errors depend on model structure, on the omission of variables that determine species distribution and on data resolution. Omission errors lead to identifying networks of areas for conservation action that are smaller than required and centred on known species occurrences, thus affecting the comprehensiveness, representativeness and efficiency of selected areas. Commission errors lead to selecting areas not relevant to conservation, thus affecting the representativeness and adequacy of reserve networks. Conservation plans should include an estimation of commission and omission errors in underlying species data and explicitly use this information to influence conservation planning outcomes.
Resumo:
A number of systematic conservation planning tools are available to aid in making land use decisions. Given the increasing worldwide use and application of reserve design tools, including measures of site irreplaceability, it is essential that methodological differences and their potential effect on conservation planning outcomes are understood. We compared the irreplaceability of sites for protecting ecosystems within the Brigalow Belt Bioregion, Queensland, Australia, using two alternative reserve system design tools, Marxan and C-Plan. We set Marxan to generate multiple reserve systems that met targets with minimal area; the first scenario ignored spatial objectives, while the second selected compact groups of areas. Marxan calculates the irreplaceability of each site as the proportion of solutions in which it occurs for each of these set scenarios. In contrast, C-Plan uses a statistical estimate of irreplaceability as the likelihood that each site is needed in all combinations of sites that satisfy the targets. We found that sites containing rare ecosystems are almost always irreplaceable regardless of the method. Importantly, Marxan and C-Plan gave similar outcomes when spatial objectives were ignored. Marxan with a compactness objective defined twice as much area as irreplaceable, including many sites with relatively common ecosystems. However, targets for all ecosystems were met using a similar amount of area in C-Plan and Marxan, even with compactness. The importance of differences in the outcomes of using the two methods will depend on the question being addressed; in general, the use of two or more complementary tools is beneficial.
Resumo:
Spatial data mining recently emerges from a number of real applications, such as real-estate marketing, urban planning, weather forecasting, medical image analysis, road traffic accident analysis, etc. It demands for efficient solutions for many new, expensive, and complicated problems. In this paper, we investigate the problem of evaluating the top k distinguished “features” for a “cluster” based on weighted proximity relationships between the cluster and features. We measure proximity in an average fashion to address possible nonuniform data distribution in a cluster. Combining a standard multi-step paradigm with new lower and upper proximity bounds, we presented an efficient algorithm to solve the problem. The algorithm is implemented in several different modes. Our experiment results not only give a comparison among them but also illustrate the efficiency of the algorithm.