3 resultados para southern China

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Schistosomiasis japonica is a zoonosis of major public health importance in southern China. We undertook a drug intervention to test the hypothesis that buffalo are major reservoirs for human infection in the marshlands/lake areas, where one million people are infected. We compared human and buffalo infection rates and intensity in an intervention village (Jishan), where humans and buffalo were treated with praziquantel, and a control village (Hexi), where only humans were treated, in the Poyang Lake region. Over the four-year study, human incidence in Jishan decreased but increased in Hexi. Adjustment of incidence by age, sex, water exposure, year, and village further confirmed the decreased human infection in Jishan. Chemotherapy for buffaloes resulted in a decrease in buffalo infection rates in Jishan, which coincided with the reduction in human infection rates there in the last two years of the study. Mathematical modeling predicted that buffalo are responsible for 75% of human transmission in Jishan. Copyright © 2006 by The American Society of Tropical Medicine and Hygiene.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Large storm-relocated Porites coral blocks are widespread on the reef flats of Nansha area, southern South China Sea. Detailed investigations of coral reef ecology, geomorphology and sedimentation on Yongshu Reef indicate that such storm-relocated blocks originated from large Porites lutea corals growing on the spurs within the reef-front living coral zone. Because the coral reef has experienced sustained subsidence and reef development during the Holocene, dead corals were continuously covered by newly growing coral colonies. For this reason, the coral blocks must have been relocated by storms from the living sites and therefore the ages of these storm-relocated corals should approximate the times when the storms occurred. Rapid emplacement of these blocks is also evidenced by the lack of coral overgrowth, encrustation or subtidal alteration. U-series dating of the storm-relocated blocks as well as of in situ reef flat corals suggests that, during the last 1000 years, at least six strong storms occurred in 1064 +/- 30, 1210 +/- 5-1201 +/- 4, 1336 +/- 9, 1443 +/- 9, 1685 +/- 8-1680 +/- 6, 1872 +/- 15 AD, respectively, with an average 160-year cycle (110-240 years). The last storm, which occurred in 1872 15 AD, also led to mortality of the reef flat corals dated at similar to 130 years ago. Thus, the storm had significant impacts on coral reef ecology and morphology. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Accurate dating of lagoon sediments has been a difficult problem, although lagoon profiles, usually with high deposition rates, have a great potential for high-resolution climate reconstruction. We report 26 high-precision TIMS U-series dates (on 25 coral branches) and five AMS C-14 dates (on foraminifera) for a 15.4-m long lagoon core from Yongshu Reef, Nansha area, southern South China Sea. All the dates are in the correct stratigraphical sequence, providing the best chronology so far reported for lagoon deposits. The results reveal a similar to 4000-a continuous depositional history, with sedimentation rates varying from 0.8 to 24.6 mm a(-1), with an average of 3.85 mm a(-1), which corresponds to an average net carbonate accumulation rate of similar to 2700 g CaCO3 m(-2) a(-1), significantly higher than the mean value (800 +/- 400 g CaCO3 m(-2) a(-1)) used for lagoons in general in previous studies of global carbonate budget. Episodes of accelerated depositions within the last 1000 years correlate well with strong storm events identified by U-series dates of storm-transported coral blocks in the area. However, in the longer term, the sedimentation rates during the past 1000 years were much higher than earlier on, probably due to more vigorous wave-reef interaction as a result of relative sea-level fall since 500 AD and expansion of reef flat area, supplying more sediments. The coral TIMS U-series ages and foraminifera AMS 14C dates reveal intriguing apparent radiocarbon reservoir ages (R) from 572 to 1052 years, which are much higher than global mean values of similar to 400 years. (c) 2006 Elsevier Ltd. All rights reserved.