11 resultados para solar energy budget
em University of Queensland eSpace - Australia
Resumo:
Measurements of mean and fluctuating velocity and temperature and their self- and cross-products to the third-order are presented for a heated axisymmetric air jet. Froude numbers in the range of 3500 13,190, Reynolds numbers in the range of 3470-8500 and non-dimensional streamwise distances. X*, from 0.27 to 1.98 are covered by the data. It was found that turbulence intensity decreases for the heated jet in the region between the inertia dominated and the buoyancy dominated regions which is contrary to findings with helium jets mixing with ambient air to produce density fluctuations. The effects of heating on the turbulent kinetic energy budget and the temperature variance budget show small differences for the inertia dominated region and the intermediate region which help to explain the transition process to the far field plume region. Constants are evaluated for the isotropic eddy diffusivity and generalised gradient hypothesis models as well as the scalar variance model. No significant effect of heating on the dissipation time-scale ratio was found. A novel wire array with an inclined cold wire was used. Measurements obtained with this probe are found to lead to asymmetries in some of the higher-order products. Further investigation suggested that the asymmetries are attributable to an as yet unreported interference effect produced by the leading prong of the inclined temperature wire, The effect may also have implications for inclined velocity wires which contain a temperature component when used in heated flows. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
Passive techniques as an alternative to artificial cooling can bring important energy, environmental, financial, operational and qualitative benefits. However, regions such as the wet tropics can reach high levels of thermal stress in which passive means alone are unable to provide appropriate thermal comfort standards for some parts of the year. Despite a great accumulation of empirical information on the passive performance of houses for either free-running or conditioned modes, very little work has been done on the thermal performance of buildings that can operate with a mixed-running strategy in warm-humid climates. Buildings with such design features are able to balance the needs for comfort, privacy, and energy efficiency during different periods of the year. As free-running and conditioned modes are believed by many to be 'opposite' approaches, and have been presented as separate strategies, this paper demonstrates that not all parameters are directly opposite and a possible dual-mode integrated operation can be used for warm-humid locations for maximum comfort and minimum energy requirements. For this purpose, simulation runs using ESP-R (University of Strathclyde, ESRU, UK) were based on the climate data of Darwin (Australia) and on the ventilation styles of the house: free running and conditioned. Design features applicable to both, i.e. for a dual mode operation could be identified and the differences between conditioned and free running were demonstrated and proved not to be totally conflicting and therefore suitable for a dual mode operation. Different daily usage profiles (five use patterns were defined), and zoning of sleeping and living areas are presented. The dual mode use patterns compared to the base case house, for all the user possibilities, had improved performances of 17-52%, when compared to the free-running mode and 66-98% when compared to the conditioned mode. Simulation runs using other warm-humid climates (Miami, USA; Sao Luis, Brazil; Kuala Lumpur, Malaysia) were also conducted and compared to the results found for Darwin. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Oxygenic photosynthetic organisms use solar energy to split water (H2O) into protons (H+), electrons (e(-)), and oxygen. A select group of photosynthetic microorganisms, including the green alga Chlamydomonas reinhardtii, has evolved the additional ability to redirect the derived H+ and e(-) to drive hydrogen (H-2) production via the chloroplast hydrogenases HydA1 and A2 (H(2)ase). This process occurs under anaerobic conditions and provides a biological basis for solar-driven H-2 production. However, its relatively poor yield is a major limitation for the economic viability of this process. To improve H-2 production in Chlamydomonas, we have developed a new approach to increase H+ and e(-) supply to the hydrogenases. In a first step, mutants blocked in the state 1 transition were selected. These mutants are inhibited in cyclic e(-) transfer around photosystem I, eliminating possible competition for e(-) with H(2)ase. Selected strains were further screened for increased H-2 production rates, leading to the isolation of Stm6. This strain has a modified respiratory metabolism, providing it with two additional important properties as follows: large starch reserves ( i.e. enhanced substrate availability), and a low dissolved O-2 concentration (40% of the wild type (WT)), resulting in reduced inhibition of H2ase activation. The H-2 production rates of Stm6 were 5 - 13 times that of the control WT strain over a range of conditions ( light intensity, culture time, +/- uncoupler). Typically, similar to 540 ml of H-2 liter(-1) culture ( up to 98% pure) were produced over a 10-14-day period at a maximal rate of 4 ml h(-1) ( efficiency = similar to 5 times the WT). Stm6 therefore represents an important step toward the development of future solar-powered H-2 production systems.
Resumo:
We describe a single step method to synthesise lead sulphide (PbS) nanocrystals directly in the conjugated polymer poly (2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylene vinylene) (MEH-PPV). This method allows size control of the nanocrystal via co-solvent ratios. We find good agreement between nanocrystal sizes determined by transmission electron microscopy and sizes theoretically determined from the absorption edge of the nanocrystals. Finally we show that this synthesis technique is not restricted to MEH-PPV and demonstrate that nanocrystals can be grown in Poly(3-hexylthiophene-2,5-diyl) (P3HT). (C) 2005 Elsevier B.V. All rights reserved.