21 resultados para soil respiration rate
em University of Queensland eSpace - Australia
Resumo:
Root respiration uses a significant proportion of photosynthetically fixed carbon (C) and is a globally important source of C liberated from soils. Mangroves, which are an important and productive forest resource in many tropical and subtropical countries, sustain a high ratio of root to shoot biomass which may indicate that root respiration is a particularly important component in mangrove forest carbon budgets. Mangroves are often exposed to nutrient pollution from coastal waters. Here we assessed the magnitude of fine root respiration in mangrove forests in Belize and investigated how root respiration is influenced by nutrient additions. Respiration rates of excised fine roots of the mangrove, Rhizophora mangle L., were low (4.01 +/- 0.16 nmol CO2 g(-1) s(-1)) compared to those measured in temperate tree species at similar temperatures. In an experiment where trees where fertilized with nitrogen (N) or phosphorus (P) in low productivity dwarf forests (1-2 m height) and more productive, taller (47 m height) seaward fringing forests, respiration of fine roots did not vary consistently with fertilization treatments or with forest stature. Fine roots of taller fringe trees had higher concentrations of both N and P compared to dwarf trees. Fertilization with P enhanced fine root P concentrations in both dwarf and fringe trees, but reduced root N concentrations compared to controls. Fertilization with N had no effect on root N or P concentrations. Unlike photosynthetic C gain and growth, which is strongly limited by P availability in dwarf forests at this site, fine root respiration (expressed on a mass basis) was variable, but showed no significant enhancements with nutrient additions. Variation in fine root production and standing biomass are, therefore, likely to be more important factors determining C efflux from mangrove sediments than variations in fine root respiration per unit mass.
Resumo:
To characterise the physiology of development and senescence for Grevillea 'Sylvia'. oral organs, respiration, ethylene production and ACC concentrations in harvested flowers and flower parts were measured. The respiration rate of harvested inflorescences decreased over time during senescence. In contrast, both ethylene production and ACC concentration increased. Individual flowers, either detached from cut inflorescences held in vases at 20degreesC or detached from in planta inflorescences at various stages of development, had similar patterns of change in ACC concentration and rates of respiration and ethylene production as whole inflorescences. The correlation between ACC concentration and ethylene production by individual flowers detached from cut inflorescences held in vases was poor (r(2)=0.03). The isolated complete gynoecium (inclusive of the pedicel) produced increasing amounts of ethylene during development. Further sub-division of flower parts and measurement of their ethylene production at various stages of development revealed that the distal part of the gynoecium (inclusive of the stigma) had the highest rate of ethylene production. In turn, anthers had higher rates of ethylene production and also higher ACC concentrations than the proximal part of the gynoecium (inclusive of the ovary). Rates of ethylene production and ACC concentrations for tepal abscission zone tissue and adjacent central tepal zone tissue were similar. ACC concentration in pollen was similar to that in senescing perianth tissue. Overall, respiration, ethylene and ACC content measurements suggest that senescence of G. 'Sylvia' is non-climacteric in character. Nonetheless, the phytohormone ethylene is produced and evidently mediates normal flower development and non-climacteric senescence processes.
Resumo:
Six Bos taurus (Hereford) steers (body weight 324 22 kg) were used in a 45-day study with a replicated 3 x 3 Latin-square design. Three treatments [ad libitum feeding (ADLIB); limit feeding, 85% of ad libitum (LIMIT); bunk management feeding where steers were only given access to feed from 1600 to 0800 hours the following day (BUNK)] were imposed over 3 periods, with 2 steers assigned to each treatment in each period. Cattle were managed in a temperature-controlled metabolism unit and were exposed to both thermoneutral (17.7degreesC-26.1degreesC) and hot (16.7degreesC-32.9degreesC) environmental conditions. By design, during the thermoneutral period, the ADLIB cattle displayed greater intake (P < 0.05) than the LIMIT group, with the BUNK group being intermediate. However, during the hot period, both the LIMIT and BUNK treatment groups increased feed intake 4-5%, whereas feed intake of the ADLIB treatment group declined nearly 2%. During both periods respiration rate (RR, breath/min) followed the same pattern that was observed for feed intake, with the greatest (P < 0.05) RR found in the ADLIB treatment group (81.09 and 109.55, thermoneutral and hot, respectively) and lowest (P < 0.05) RR in the LIMIT treatment group (74.47 and 102.76, thermoneutral and hot, respectively). Rectal temperature (RT) did not differ among treatments during the thermoneutral period or the first hot day, although during the thermoneutral period the ADLIB treatment group did tend to display a lower RT, possibly as a result of other physiological processes (pulse rate and RR) aiding to keep RT lower. During the hot period, differences in RT were found on Day 5, with the LIMIT cattle having lower (P < 0.10) RT (38.92degreesC) than the ADLIB (39.18degreesC) cattle, with BUNK cattle RT (39.14degreesC) being intermediate. However, when hourly data were examined, the ADLIB cattle had greater(P < 0.05) RT than the BUNK and LIMIT at 1800 hours and greater RT (P < 0.05) than the LIMIT group at 1400, 1500, and 1600 hours. Clearly, a change in diurnal RT pattern was obtained by using the LIMIT and BUNK feeding regimen. Both of these groups displayed a peak RT during the hot conditions, between 2100 and 2200 hours, whereas the ADLIB group displayed a peak RT between 1400 and 1500 hours, a time very close to when peak climatic stress occurs. Based on these results it is apparent that feedlot managers could alleviate the effects of adverse hot weather on cattle by utilising either a limit-feeding regimen or altering bunk management practices to prevent feed from being consumed several hours prior to the hottest portion of the day.
Resumo:
A controlled crossover experimental design was used to determine the effect of altered water sprinkling duration on heifers subjected to heat stress conditions. Heifers were subjected to 3 days of thermoneutral conditions followed by 3 days of hot conditions accompanied by water sprinkling between 1300 and 1500 h (HOT1-3). Then on the following 2 days (HOT4-5), environmental conditions remained similar, but 3 heifers were sprinkled between 1200 and 1600 h ( WET) and 3 were not sprinkled (NONWET). This was followed by a 1-day period (HOT6) in which environmental conditions and sprinkling regimen were similar to HOT1-3. Rectal temperature (RT) was collected hourly, and respiration rate (RR) was monitored every 2 h on HOT Days 2, 4, 5, and 6. Dry matter intake and rate of eating were also determined. Sprinkling reduced RR and RT (P < 0.01) of all heifers during HOT1-3. During HOT4-5, WET heifers had lower (P < 0.05) RT than NONWET from 1300 to 700 h and lower RR from 1400 to 2000 h. Dry matter intake of NONWET heifers was reduced by 30.6% (P < 0.05) during HOT4-5 and by 51.2% on HOT6. On HOT4-5 the dry matter intakes of WET heifers were similar to intakes under thermoneutral conditions. During HOT6, RT was again reduced following sprinkling in all heifers. Comparison of RT and RR of NONWET and WET heifers on HOT1-3 v. HOT6 revealed that under similar environmental conditions, NONWET heifers had increased RT, partially due to carry-over from HOT4-5. However, NONWET heifers had 40% lower feed intake but tended to have lower RR on HOT6 v. HOT1-3. Only RR of WET heifers was greater on HOT6, possibly a result of switching from a 4-h back to a 2-h sprinkling period, while maintaining a 62% greater intake (5.80 v. 3.58 kg/day) than NONWET heifers during this time. Results suggest that inconsistent cooling regimens may increase the susceptibility of cattle to heat stress and elicit different physiological and metabolic responses.
Resumo:
Six steers (3/4 Charolaisx1/4 Brahman) (mean body weight 314 +/- 27 kg) and six spayed heifers (3/5 Shorthornx2/5 Red Angus) (mean body weight 478 +/- 30 kg) were used to determine the effects of climatic conditions and hormone growth promotants (HGP) on respiration rate (RR; breaths/min), pulse rate (beats/min), rectal temperature (RT; degrees C), and heat production (HP; kJ). Cattle were exposed to the following climatic conditions prior to implantation with a HGP and then again 12 days after implantation: 2 days of thermoneutral conditions (TNL) [21.9 +/- 0.9 degrees C ambient temperature (T-A) and 61.7 +/- 22.1% relative humidity (RH)] then 2 days of hot conditions [HOT; 29.2 +/- 4 degrees C (T-A) and 78.3 +/- 13.2% (RH)], then TNL for 3 days and then 2 days of cold conditions [COLD; 17.6 +/- 0.9 degrees C (T-A) and 63.4 +/- 1.8% (RH); cattle were wet during this treatment]. The HGP implants used were: estrogenic implant (E), trenbolone acetate implant (TBA), or both (ET). Both prior to and following administration of HGP, RRs were lower (P < 0.05) on cold days and greater (P < 0.05) on hot days compared to TNL. On hot days, RTs, were 0.62 degrees C higher after compared to before implanting. Across all conditions, RTs were > 0.5 degrees C greater (P < 0.05) for E cattle than for TBA or ET cattle. On cold days, RTs of steers were > 0.8 degrees C higher than for the heifers, while under TNL and HOT, RTs of steers were 0.2-0.35 degrees C higher than those of heifers. Prior to implantation, HP per hour and per unit of metabolic body weight was higher (P < 0.05) for cattle exposed to hot conditions, when compared to HP on cold days. After implantation, HP was greater (P < 0.05) on hot days than on cold days. Under TNL, ET cattle had the lowest HP and greatest feed intake. On hot days, E cattle had the lowest HP, and the highest RT; therefore, if the potential exists for cattle death from heat episodes, the use of either TBA or ET may be preferred. Under cold conditions HP was similar among implant groups.
Resumo:
The effects of modified atmosphere (MA) conditions on the quality of minimally processed pineapple slices were determined. Commercial pineapple slice packs sealed with 40 pm thick polyester film were kept at 4.5 degrees C for 14 d. The oxygen transmission rate of the film was 23 ml m(-2) day(-1) atm(-1) (at 25 degrees C, 75% RH). In-built atmospheres and the quality of the products were determined. O-2 concentrations within the packs stabilised at 2%, while CO2 concentrations increased to 70% by day 14. The high CO2 level suggested an inappropriate lidding film permeability for the product, and hence affected its quality. Three batches of pineapple slices were packed in the laboratory using lidding films with oxygen transmission rate of 75, 2790 or 5000 ml m(-2) day(-1) atm(-1) (at 23 degrees C, 0% RH). Headspace atmospheres from laboratory-packed pineapple slices suggested an optimum equilibrium modified atmosphere of ca. 2% O-2 and 15% CO2. Respiration data from the laboratory-prepared packs were pooled together and used to develop a correlation model relating respiration rates to O-2 and CO2 concentrations. The model showed a decrease in respiration rate with decreasing O-2 and increasing CO2 concentrations. Respiration rate stabilised at 2% 02 and 10% CO2. The high concentrations of CO2 observed in the commercial packs did not fit the range in the respiration model. The model could aid in selection of MA conditions for minimally processed pineapple fruit.
Resumo:
Eighteen Angus steers exposed to high heat load conditions were used to assess the effectiveness of four spray cooling systems, on reducing the effects of heat load, the impact on microclimate and water usage. The steers were housed in groups of nine in a fully enclosed shed and were exposed to high heat load conditions for four days. The cooling systems used were water applied via a hose, via overhead sprinklers, via sprinklers at leg height and via misters. The water used was approximately 31 oC and contained 3% NaCl. Fans were used to ensure adequate air movement over the cattle. The animal parameters measured were feed intake, respiration rate, panting score and behaviour. Climatic factors were ambient temperature and wet bulb temperature. Ammonia levels were also measured. The hose, overhead sprinklers and misting were successful in reducing heat load on the cattle. The leg wetting system did not work because the dominant cattle blocked access to the sprinklers. The misting system used the most water (5483 L) and the hose the least (845 L). The application of water had minor impacts on wet bulb temperature, but resulted in significant reductions in dry bulb temperatures.
Resumo:
This paper investigates the tidal effects on aeration conditions for plant root respiration in a tidal marsh. We extend the work of Ursino et al. ( 2004) by using a two-phase model for air and water flows in the marsh. Simulations have been conducted to examine directly the link between the airflow dynamics and the aeration condition in the marsh soil. The results show that the effects of entrapped air on water movement in the vadose zone are significant in certain circumstances. Single-phase models based on Richards' equation, which neglect such effects, may not be adequate for quantifying the aeration condition in tidal marsh. The optimal aeration condition, represented by the maximum of the integral magnitude of tidally advected air mass ( TAAM) flux, is found to occur near the tidal creek for the four soil textures simulated. This may explain the observation that some salt marsh plant species grow better near tidal creeks than in the inner marsh areas. Our analyses, based on the two-phase model and predicted TAAM flux magnitude, provide further insight into the positive feedback'' mechanism proposed by Ursino et al. ( 2004). That is, pioneer plants may grow successfully near the creek where the root aeration condition is optimal. The roots of the pioneer plants can soften and loosen the rhizosphere soil, which increases the evapotranspiration rate, the soil porosity, and absolute permeability and weakens the capillary effects. These, in turn, improve further the root aeration conditions and may lead to colonization by plants less resistant to anaerobic conditions.
Resumo:
Numerous studies in the last 60 years have investigated the relationship between land slope and soil erosion rates. However, relatively few of these have investigated slope gradient responses: ( a) for steep slopes, (b) for specific erosion processes, and ( c) as a function of soil properties. Simulated rainfall was applied in the laboratory on 16 soils and 16 overburdens at 100 mm/h to 3 replicates of unconsolidated flume plots 3 m long by 0.8 m wide and 0.15 m deep at slopes of 20, 5, 10, 15, and 30% slope in that order. Sediment delivery at each slope was measured to determine the relationship between slope steepness and erosion rate. Data from this study were evaluated alongside data and existing slope adjustment functions from more than 55 other studies from the literature. Data and the literature strongly support a logistic slope adjustment function of the form S = A + B/[1 + exp (C - D sin theta)] where S is the slope adjustment factor and A, B, C, and D are coefficients that depend on the dominant detachment and transport processes. Average coefficient values when interill-only processes are active are A - 1.50, B 6.51, C 0.94, and D 5.30 (r(2) = 0.99). When rill erosion is also potentially active, the average slope response is greater and coefficient values are A - 1.12, B 16.05, C 2.61, and D 8.32 (r(2) = 0.93). The interill-only function predicts increases in sediment delivery rates from 5 to 30% slope that are approximately double the predictions based on existing published interill functions. The rill + interill function is similar to a previously reported value. The above relationships represent a mean slope response for all soils, yet the response of individual soils varied substantially from a 2.5-fold to a 50-fold increase over the range of slopes studied. The magnitude of the slope response was found to be inversely related ( log - log linear) to the dispersed silt and clay content of the soil, and 3 slope adjustment equations are proposed that provide a better estimate of slope response when this soil property is known. Evaluation of the slope adjustment equations proposed in this paper using independent datasets showed that the new equations can improve soil erosion predictions.
Resumo:
We investigated the behavioural responses of two gobiid fish species to temperature to determine if differences in behaviour and ventilation rate might explain any apparent vertical zonation. A survey of the shore at Manly, Moreton Bay revealed Favonigobius exquisitus to dominate the lower shore and Pseudogobius sp. 4 the upper shore. These species were exposed to a range of temperatures (15-40 degreesC) in aquaria for up to 6 h. At 20 degreesC F. exquisitus exhibited a mean gill ventilation rate of 26 +/- 1.4 bpm (beats per minute) differing significantly from Pseudogobius, which ventilated at a fivefold greater rate of 143 +/- 6 bpm. The ventilation rate in F. exquisitus underwent a fivefold increase from normal local water temperature (20 degreesC) to high temperature (35 degreesC) conditions, whereas that of Pseudogobius did not even double, suggesting that Pseudogobius sp. is a better thermal regulator than F. exquisitus. While both species emerged from the water at high temperatures (>30 degreesC) the behaviours they exhibited while immersed at high temperature were quite different. F. exquisitus undertook vertical displacement movements we interpret as an avoidance response, whereas Pseudogobius sp. appeared to use a coping strategy involving movements that might renew the water mass adjacent to its body. The thermal tolerances and behaviours of F. exquisitus and Pseudogobius sp. are in broad agreement with their vertical distribution on the shore.
Resumo:
Limitations on maximum transpiration rates, which are commonly observed as midday stomatal closure, have been observed even under well-watered conditions. Such limitations may be caused by restricted hydraulic conductance in the plant or by limited supply of water to the plant from uptake by the roots. This behaviour would have the consequences of limiting photosynthetic rate, increasing transpiration efficiency, and conserving soil water. A key question is whether the conservation of water will be rewarded by sustained growth during seed fill and increased grain yield. This simulation analysis was undertaken to examine consequences on sorghum yield over several years when maximum transpiration rate was imposed in a model. Yields were simulated at four locations in the sorghum-growing area of Australia for 115 seasons at each location. Mean yield was increased slightly ( 5 - 7%) by setting maximum transpiration rate at 0.4 mm h(-1). However, the yield increase was mainly in the dry, low-yielding years in which growers may be more economically vulnerable. In years with yield less than similar to 450 g m(-2), the maximum transpiration rate trait resulted in yield increases of 9 - 13%. At higher yield levels, decreased yields were simulated. The yield responses to restricted maximum transpiration rate were associated with an increase in efficiency of water use. This arose because transpiration was reduced at times of the day when atmospheric demand was greatest. Depending on the risk attitude of growers, incorporation of a maximum transpiration rate trait in sorghum cultivars could be desirable to increase yields in dry years and improve water use efficiency and crop yield stability.
Resumo:
Enhanced biodegradation of organic xenobiotic compounds in the rhizosphere is frequently recorded although the specific mechanisms are poorly understood. We have shown that the mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) is enhanced in soil collected from the rhizosphere of Trifolium pratense[e.g. maximum mineralization rate = 7.9 days(-1) and time at maximum rate (t(1)) = 16.7 days for 12-day-old T. pratense soil in comparison with 4.7 days(-1) and 25.4 days, respectively, for non-planted controls). The purpose of this study was to gain a better understanding of the plant-microbe interactions involved in rhizosphere-enhanced biodegradation by narrowing down the identity of the T. pratense rhizodeposit responsible for stimulating the microbial mineralization of 2,4-D. Specifically, we investigated the distribution of the stimulatory component(s) among rhizodeposit fractions (exudates or root debris) and the influence of soil properties and plant species on its production. Production of the stimulatory rhizodeposit was dependent on soil pH (e.g. t(1) for roots grown at pH 6.5 was significantly lower than for those grown at pH 4.4) but independent of soil inorganic N concentration. Most strikingly, the stimulatory rhizodeposit was only produced by T. pratense grown in non-sterile soil and was present in both exudates and root debris. Comparison of the effect of root debris from plant species (three each) from the classes monocotyledon, dicotyledon (non-legume) and dicotyledon (legume) revealed that legumes had by far the greatest positive impact on 2,4-D mineralization kinetics. We discuss the significance of these findings with respect to legume-rhizobia interactions in the rhizosphere.