7 resultados para software distribution in using status
em University of Queensland eSpace - Australia
Resumo:
This study investigated the relative contribution of ion-trapping, microsomal binding, and distribution of unbound drug as determinants in the hepatic retention of basic drugs in the isolated perfused rat liver. The ionophore monensin was used to abolish the vesicular proton gradient and thus allow an estimation of ion-trapping by acidic hepatic vesicles of cationic drugs. In vitro microsomal studies were used to independently estimate microsomal binding and metabolism. Hepatic vesicular ion-trapping, intrinsic elimination clearance, permeability-surface area product, and intracellular binding were derived using a physiologically based pharmacokinetic model. Modeling showed that the ion-trapping was significantly lower after monensin treatment for atenolol and propranolol, but not for antipyrine. However, no changes induced by monensin treatment were observed in intrinsic clearance, permeability, or binding for the three model drugs. Monensin did not affect binding or metabolic activity in vitro for the drugs. The observed ion-trapping was similar to theoretical values estimated using the pHs and fractional volumes of the acidic vesicles and the pK(a) values of drugs. Lipophilicity and pK(a) determined hepatic drug retention: a drug with low pK(a) and low lipophilicity (e.g., antipyrine) distributes as unbound drug, a drug with high pK(a) and low lipophilicity (e.g., atenolol) by ion-trapping, and a drug with a high pK(a) and high lipophilicity (e.g., propranolol) is retained by ion-trapping and intracellular binding. In conclusion, monensin inhibits the ion-trapping of high pK(a) basic drugs, leading to a reduction in hepatic retention but with no effect on hepatic drug extraction.
Resumo:
Software Configuration Management is the discipline of managing large collections of software development artefacts from which software products are built. Software configuration management tools typically deal with artefacts at fine levels of granularity - such as individual source code files - and assist with coordination of changes to such artefacts. This paper describes a lightweight tool, designed to be used on top of a traditional file-based configuration management system. The add-on tool support enables users to flexibly define new hierarchical views of product structure, independent of the underlying artefact-repository structure. The tool extracts configuration and change data with respect to the user-defined hierarchy, leading to improved visibility of how individual subsystems have changed. The approach yields a range of new capabilities for build managers, and verification and validation teams. The paper includes a description of our experience using the tool in an organization that builds large embedded software systems.
Resumo:
This study introduces the use of combined Na-23 magnetic resonance imaging (MRI) and Na-23 NMR relaxometry for the study of meat curing. The diffusion of sodium ions into the meat was measured using Na-23 MRI on a 1 kg meat sample brined in 10% w/w NaCl for 3-100 h. Calculations revealed a diffusion coefficient of 1 x 10(-5) cm(2)/s after 3 h of curing and subsequently decreasing to 8 x 10(-6) cm(2)/s at longer curing times, suggesting that changes occur in the microscopic structure of the meat during curing. The microscopic mobility and distribution of sodium was measured using Na-23 relaxometry. Two sodium populations were observed, and with increasing length of curing time the relaxation times of these changed, reflecting a salt-induced swelling and increase in myofibrillar pore sizes. Accordingly, the present study demonstrated that pore size and thereby salt-induced swelling in meat can be assessed using Na-23 relaxometry.
Resumo:
Smoke inhalation injuries are the leading cause of mortality from burn injury. Airway obstruction due to mucus plugging and bronchoconstriction can cause severe ventilation inhomogeneity and worsen hypoxia. Studies describing changes of viscoelastic characteristics of the lung after smoke inhalation are missing. We present results of a new smoke inhalation device in sheep and describe pathophysiological changes after smoke exposure. Fifteen female Merino ewes were anesthetized and intubated. Baseline data using electrical impedance tomography and multiple-breath inert-gas washout were obtained by measuring ventilation distribution, functional residual capacity, lung clearance index, dynamic compliance, and stress index. Ten sheep were exposed to standardized cotton smoke insufflations and five sheep to sham smoke insufflations. Measured carboxyhemoglobin before inhalation was 3.87 +/- 0.28% and 5 min after smoke was 61.5 +/- 2.1%, range 50-69.4% ( P < 0.001). Two hours after smoke functional residual capacity decreased from 1,773 +/- 226 to 1,006 +/- 129 ml and lung clearance index increased from 10.4 +/- 0.4 to 14.2 +/- 0.9. Dynamic compliance decreased from 56.6 +/- 5.5 to 32.8 +/- 3.2 ml/ cmH(2)O. Stress index increased from 0.994 +/- 0.009 to 1.081 +/- 0.011 ( P < 0.01) ( all means +/- SE, P < 0.05). Electrical impedance tomography showed a shift of ventilation from the dependent to the independent lung after smoke exposure. No significant change was seen in the sham group. Smoke inhalation caused immediate onset in pulmonary dysfunction and significant ventilation inhomogeneity. The smoke inhalation device as presented may be useful for interventional studies.