10 resultados para soccer
em University of Queensland eSpace - Australia
Resumo:
This paper describes the real time global vision system for the robot soccer team the RoboRoos. It has a highly optimised pipeline that includes thresholding, segmenting, colour normalising, object recognition and perspective and lens correction. It has a fast ‘paint’ colour calibration system that can calibrate in any face of the YUV or HSI cube. It also autonomously selects both an appropriate camera gain and colour gains robot regions across the field to achieve colour uniformity. Camera geometry calibration is performed automatically from selection of keypoints on the field. The system acheives a position accuracy of better than 15mm over a 4m × 5.5m field, and orientation accuracy to within 1°. It processes 614 × 480 pixels at 60Hz on a 2.0GHz Pentium 4 microprocessor.
Resumo:
This paper illustrates the prediction of opponent behaviour in a competitive, highly dynamic, multi-agent and partially observableenvironment, namely RoboCup small size league robot soccer. The performance is illustrated in the context of the highly successful robot soccer team, the RoboRoos. The project is broken into three tasks; classification of behaviours, modelling and prediction of behaviours and integration of the predictions into the existing planning system. A probabilistic approach is taken to dealing with the uncertainty in the observations and with representing the uncertainty in the prediction of the behaviours. Results are shown for a classification system using a Naïve Bayesian Network that determines the opponent’s current behaviour. These results are compared to an expert designed fuzzy behaviour classification system. The paper illustrates how the modelling system will use the information from behaviour classification to produce probability distributions that model the manner with which the opponents perform their behaviours. These probability distributions are show to match well with the existing multi-agent planning system (MAPS) that forms the core of the RoboRoos system.
Resumo:
This case report describes a strategy for assessing the suitability of orthotic prescription for individual patients with lower limb overuse injuries. The case concerns a 32 year old male soccer player with a two-year history of Achilles tendinopathy. A functional assessment performed before, during, and after a trial period of anti-pronation taping showed that taping reduced symptoms markedly and resulted in a 10-fold increase in pain-free jogging distance. This was interpreted as an indication for favourable orthotic intervention. Subsequently, orthotic intervention was associated with a similar reduction in symptoms and improvement in function. This case study illustrates how a trial period of anti-pronation taping could assist therapists to make decisions about prescription of orthoses for lower limb overuse injuries.
Resumo:
BACKGROUND. Regular physical activity is strongly advocated in children, with recommendations suggesting up to several hours of daily participation. However, an unintended consequence of physical activity is exposure to the risk of injury. To date, these risks have not been quantified in primary school-aged children despite injury being a leading cause for hospitalization and death in this population. OBJECT. Our goal was to quantify the risk of injury associated with childhood physical activity both in and out of the school setting and calculate injury rates per exposure time for organized and non-organized activity outside of school. METHODS. The Childhood Injury Prevention Study prospectively followed a cohort of randomly selected Australian primary school- and preschool-aged children (4 to 12 years). Over 12 months, each injury that required first aid attention was registered with the study. Exposure to physical activity outside school hours was measured by using a parent-completed 7-day diary. The age and gender distribution of injury rates per 10 000 hours of exposure were calculated for all activity and for organized and non-organized activity occurring outside school hours. In addition, child-based injury rates were calculated for physical activity-related injuries both in and out of the school setting. RESULTS. Complete diary and injury data were available for 744 children. There were 504 injuries recorded over the study period, 396 (88.6%) of which were directly related to physical activity. Thirty-four percent of physical activity-related injuries required professional medical treatment. Analysis of injuries occurring outside of school revealed an overall injury rate of 5.7 injuries per 10 000 hours of exposure to physical activity and a medically treated injury rate of 1.7 per 10 000 hours. CONCLUSION. Injury rates per hours of exposure to physical activity were low in this cohort of primary school-aged children, with < 2 injuries requiring medical treatment occurring for every 10 000 hours of activity participation outside of school.
Resumo:
Background: Children engage in various physical activities that pose different injury risks. However, the lack of adequate data on exposure has meant that these risks have not been quantified or compared in young children aged 5-12 years. Objectives: To measure exposure to popular activities among Australian primary school children and to quantify the associated injury risks. Method: The Childhood Injury Prevention Study prospectively followed up a cohort of randomly selected Australian primary and preschool children aged 5-12 years. Time (min) engaged in various physical activities was measured using a parent-completed 7-day diary. All injuries over 12 months were reported to the study. All data on exposure and injuries were coded using the International classification of external causes of injury. Injury rates per 1000 h of exposure were calculated for the most popular activities. Results: Complete diaries and data on injuries were available for 744 children. Over 12 months, 314 injuries relating to physical activity outside of school were reported. The highest injury risks per exposure time occurred for tackle-style football (2.18/1000 h), wheeled activities (1.72/1000 h) and tennis (1.19/1000 h). Overall, boys were injured more often than girls; however, the differences were non-significant or reversed for some activities including soccer, trampolining and team ball sports. Conclusion: Although the overall injury rate was low in this prospective cohort, the safety of some popular childhood activities can be improved so that the benefits may be enjoyed with fewer negative consequences.
Resumo:
This paper presents a new approach to improving the effectiveness of autonomous systems that deal with dynamic environments. The basis of the approach is to find repeating patterns of behavior in the dynamic elements of the system, and then to use predictions of the repeating elements to better plan goal directed behavior. It is a layered approach involving classifying, modeling, predicting and exploiting. Classifying involves using observations to place the moving elements into previously defined classes. Modeling involves recording features of the behavior on a coarse grained grid. Exploitation is achieved by integrating predictions from the model into the behavior selection module to improve the utility of the robot's actions. This is in contrast to typical approaches that use the model to select between different strategies or plays. Three methods of adaptation to the dynamic features of the environment are explored. The effectiveness of each method is determined using statistical tests over a number of repeated experiments. The work is presented in the context of predicting opponent behavior in the highly dynamic and multi-agent robot soccer domain (RoboCup)
Resumo:
The control and coordination of multiple mobile robots is a challenging task; particularly in environments with multiple, rapidly moving obstacles and agents. This paper describes a robust approach to multi-robot control, where robustness is gained from competency at every layer of robot control. The layers are: (i) a central coordination system (MAPS), (ii) an action system (AES), (iii) a navigation module, and (iv) a low level dynamic motion control system. The multi-robot coordination system assigns each robot a role and a sub-goal. Each robot’s action execution system then assumes the assigned role and attempts to achieve the specified sub-goal. The robot’s navigation system directs the robot to specific goal locations while ensuring that the robot avoids any obstacles. The motion system maps the heading and speed information from the navigation system to force-constrained motion. This multi-robot system has been extensively tested and applied in the robot soccer domain using both centralized and distributed coordination.
Resumo:
The UQ RoboRoos have been developed to participate in the RoboCup robot soccer small size league over several years. RoboCup 2001 saw a focus on the mechanical design of the RoboRoos, with the introduction of an omni-directional drive system and a high power kicker. The change in mechanical design had implications for the rest of the system particularly navigation and multi-robot planning. In addition, the overhead vision system was upgraded to improve reliability and robustness.