18 resultados para sliding-blocks
em University of Queensland eSpace - Australia
Resumo:
The sliding clamp of the Escherichia coli replisome is now understood to interact with many proteins involved in DNA synthesis and repair. A universal interaction motif is proposed to be one mechanism by which those proteins bind the E. coli sliding clamp, a homodimer of the beta subunit, at a single site on the dimer. The numerous beta(2)-binding proteins have various versions of the consensus interaction motif, including a related hexameric sequence. To determine if the variants of the motif could contribute to the competition of the beta-binding proteins for the beta(2) site, synthetic peptides derived from the putative beta(2)-binding motifs were assessed for their abilities to inhibit protein-beta(2) interactions, to bind directly to beta(2), and to inhibit DNA synthesis in vitro. A hierarchy emerged, which was consistent with sequence similarity to the pentameric consensus motif, QL(S/D)LF, and peptides containing proposed hexameric motifs were shown to have activities comparable to those containing the consensus sequence. The hierarchy of peptide binding may be indicative of a competitive hierarchy for the binding of proteins to beta(2) in various stages or circumstances of DNA replication and repair.
Resumo:
Tertiapin, a short peptide from honey bee venom, has been reported to specifically block the inwardly rectifying K+ (Kir) channels, including G protein-coupled inwardly rectifying potassium channel (GIRK) 1 + GIRK4 heteromultimers and ROMK1 homomultimers. In the present study, the effects of a stable and functionally similar derivative of tertiapin, tertiapin-Q, were examined on recombinant human voltage-dependent Ca2+-activated large conductance K+ channel (BK or MaxiK; alpha-subunit or hSlo1 homomultimers) and mouse inwardly rectifying GIRK1 + GIRK2 (i.e., Kir3.1 and Kir3.2) heteromultimeric K+ channels expressed in Xenopus oocytes and in cultured newborn mouse dorsal root ganglion (DRG) neurons. In two-electrode voltage-clamped oocytes, tertiapin-Q (1-100 nM) inhibited BK-type K+ channels in a use- and concentration-dependent manner. We also confirmed the inhibition of recombinant GIRK1 + GIRK2 heteromultimers by tertiapin-Q, which had no effect on endogenous depolarization- and hyperpolarization-activated currents sensitive to extracellular divalent cations (Ca2+, Mg2+, Zn2+, and Ba2+) in defolliculated oocytes. In voltage-clamped DRG neurons, tertiapin-Q voltage- and use-dependently inhibited outwardly rectifying K+ currents, but Cs+-blocked hyperpolarization-activated inward currents including I-H were insensitive to tertiapin-Q, baclofen, barium, and zinc, suggesting absence of functional GIRK channels in the newborn. Under current-clamp conditions, tertiapin-Q blocked the action potential after hyperpolarization (AHP) and increased action potential duration in DRG neurons. Taken together, these results demonstrate that the blocking actions of tertiapin-Q are not specific to Kir channels and that the blockade of recombinant BK channels and native neuronal AHP currents is use-dependent. Inhibition of specific types of Kir and voltage-dependent Ca2+-activated K+ channels by tertiapin-Q at nanomolar range via different mechanisms may have implications in pain physiology and therapy.
Resumo:
Objective: To understand the basis of the effectiveness of carvedilol in heart failure by determining its specific properties at human heart and beta(2)-adrenoceptors. Methods: The positive inotropic effects of noradrenaline (in the presence of the beta(2)-selective antagonist ICI118551) and adrenaline (in the presence of the beta(1)-selective antagonist CGP20712), mediated through beta(1)- and beta(2)-adrenoceptors, respectively, were investigated in atrial and ventricular trabeculae. The patch-clamp technique was used to investigate effects of noradrenaline and adrenaline on L-type Ca2+ current in human atrial myocytes. Results: Carvedilol was a 13-fold more potent competitive antagonist of the effects of adrenaline at 1 2-adrenoceptors (-logK(B) = 10.13 +/- 0.08) than of noradrenaline at beta(1)-adrenoceptors (-logK(B) = 9.02 +/- 0.07) in human right atrium. Chronic carvedilol treatment of patients with non-terminal heart failure reduced the inotropic sensitivity of atrial trabeculae to noradrenaline and adrenaline 5.6-fold and 91.2-fold, respectively, compared to beta(1)-blocker-treated patients, consistent with persistent preferential blockade of beta(2)-adrenoceptors. In terminal heart failure carvedilol treatment reduced 1.8-fold and 25.1-fold the sensitivity of right ventricular trabeculae to noradrenaline and adrenaline, respectively, but metoprolol treatment did not reduce the sensitivity to the catecholamines. Increases of current (I-Ca,I-L) produced by noradrenaline and adrenaline were not different in atrial myocytes obtained from non-terminal heart failure patients treated with metoprolol or carvedilol, consistent with dissociation of both beta-blockers from the receptors. Conclusions: Carvedilol blocks human cardiac beta(2)-adrenoceptors more than beta(1)-adrenoceptors, thereby conceivably contributing to the beneficial effects in heart failure. The persistent blockade of beta-adrenoceptors is attributed to accumulation of carvedilol in cardiac tissue. (c) 2005 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
Resumo:
The sugarcane plant, with its enormous genetic capacity to accumulate carbon and manufacture and store sucrose, also has the potential to accumulate carbon and metabolically create a wide range of new molecules for industrial and other commercial uses. The extent to which this change can be developed and realised commercially is a function of the technical competence of the industry's R&D capacity, the reality of the commercial drivers which support this global agenda, and the determination of the industry to achieve such goals. The outcomes of existing R&D work already strongly support the technical challenges of this opportunity in sugarcane. The current challenge remains the commercialisation of the technology in a global market in which the current business structures and systems for the manufacture and distribution of existing (competitive) products makes the development of new product lines a higher risk than might otherwise be the case. This is despite all the claims that global markets are expecting and (in some cases) legislating the creation of more sustainable production systems. The options and issues for the development of a sugarcane biofactory system are discussed.
Resumo:
The tetroclotoxin-resistant voltage-gated sodium channel (VGSC) Na(v)1.8 is expressed predominantly by damage-sensing primary afferent nerves and is important for the development and maintenance of persistent pain states. Here we demonstrate that mu O-conotoxin MrVIB from Conus marmoreus displays substantial selectivity for Na(v)1.8 and inhibits pain behavior in models of persistent pain. In rat sensory neurons, submicromolar concentrations of MrVIB blocked tetroclotoxin-resistant current characteristic of Na(v)1.8 but not Na(v)1.9 or tetroclotoxin-sensitive VGSC currents. MrVIB blocked human Nav1.8 expressed in Xenopus oocytes with selectivity at least 10-fold greater than other VGSCs. In neuropathic and chronic inflammatory pain models, allodynia and hyperalgesia were both reduced by intrathecal infusion of MrVIB (0.03-3 nmol), whereas motor side effects occurred only at 30-fold higher doses. In contrast, the nonselective VGSC blocker lignocaine displayed no selectivity for allodynia and hyperalgesia versus motor side effects. The actions of MrVIB reveal that VGSC antagonists displaying selectivity toward Na(v)1.8 can alleviate chronic pain behavior with a greater therapeutic index than nonselective antagonists.
Resumo:
In many online applications, we need to maintain quantile statistics for a sliding window on a data stream. The sliding windows in natural form are defined as the most recent N data items. In this paper, we study the problem of estimating quantiles over other types of sliding windows. We present a uniform framework to process quantile queries for time constrained and filter based sliding windows. Our algorithm makes one pass on the data stream and maintains an E-approximate summary. It uses O((1)/(epsilon2) log(2) epsilonN) space where N is the number of data items in the window. We extend this framework to further process generalized constrained sliding window queries and proved that our technique is applicable for flexible window settings. Our performance study indicates that the space required in practice is much less than the given theoretical bound and the algorithm supports high speed data streams.