4 resultados para skewness

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of acceleration skewness on sheet flow sediment transport rates (q) over bar (s) is analysed using new data which have acceleration skewness and superimposed currents but no boundary layer streaming. Sediment mobilizing forces due to drag and to acceleration (similar to pressure gradients) are weighted by cosine and sine, respectively, of the angle phi(.)(tau)phi(tau) = 0 thus corresponds to drag dominated sediment transport, (q) over bar (s)similar to vertical bar u(infinity)vertical bar u(infinity), while phi(tau) = 90 degrees corresponds to total domination by the pressure gradients, (q) over bar similar to du(infinity)/dt. Using the optimal angle, phi = 51 degrees based on that data, good agreement is subsequently found with data that have strong influence from boundary layer streaming. Good agreement is also maintained with the large body of U-tube data simulating sine waves with superimposed currents and second-order Stokes waves, all of which have zero acceleration skewness. The recommended model can be applied to irregular waves with arbitrary shape as long as the assumption negligible time lag between forcing and sediment transport rate is valid. With respect to irregular waves, the model is much easier to apply than the competing wave-by-wave models. Issues for further model developments are identified through a comprehensive data review.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A test of the ability of a probabilistic neural network to classify deposits into types on the basis of deposit tonnage and average Cu, Mo, Ag, Au, Zn, and Pb grades is conducted. The purpose is to examine whether this type of system might serve as a basis for integrating geoscience information available in large mineral databases to classify sites by deposit type. Benefits of proper classification of many sites in large regions are relatively rapid identification of terranes permissive for deposit types and recognition of specific sites perhaps worthy of exploring further. Total tonnages and average grades of 1,137 well-explored deposits identified in published grade and tonnage models representing 13 deposit types were used to train and test the network. Tonnages were transformed by logarithms and grades by square roots to reduce effects of skewness. All values were scaled by subtracting the variable's mean and dividing by its standard deviation. Half of the deposits were selected randomly to be used in training the probabilistic neural network and the other half were used for independent testing. Tests were performed with a probabilistic neural network employing a Gaussian kernel and separate sigma weights for each class (type) and each variable (grade or tonnage). Deposit types were selected to challenge the neural network. For many types, tonnages or average grades are significantly different from other types, but individual deposits may plot in the grade and tonnage space of more than one type. Porphyry Cu, porphyry Cu-Au, and porphyry Cu-Mo types have similar tonnages and relatively small differences in grades. Redbed Cu deposits typically have tonnages that could be confused with porphyry Cu deposits, also contain Cu and, in some situations, Ag. Cyprus and kuroko massive sulfide types have about the same tonnages. Cu, Zn, Ag, and Au grades. Polymetallic vein, sedimentary exhalative Zn-Pb, and Zn-Pb skarn types contain many of the same metals. Sediment-hosted Au, Comstock Au-Ag, and low-sulfide Au-quartz vein types are principally Au deposits with differing amounts of Ag. Given the intent to test the neural network under the most difficult conditions, an overall 75% agreement between the experts and the neural network is considered excellent. Among the largestclassification errors are skarn Zn-Pb and Cyprus massive sulfide deposits classed by the neuralnetwork as kuroko massive sulfides—24 and 63% error respectively. Other large errors are the classification of 92% of porphyry Cu-Mo as porphyry Cu deposits. Most of the larger classification errors involve 25 or fewer training deposits, suggesting that some errors might be the result of small sample size. About 91% of the gold deposit types were classed properly and 98% of porphyry Cu deposits were classes as some type of porphyry Cu deposit. An experienced economic geologist would not make many of the classification errors that were made by the neural network because the geologic settings of deposits would be used to reduce errors. In a separate test, the probabilistic neural network correctly classed 93% of 336 deposits in eight deposit types when trained with presence or absence of 58 minerals and six generalized rock types. The overall success rate of the probabilistic neural network when trained on tonnage and average grades would probably be more than 90% with additional information on the presence of a few rock types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we investigate a Bayesian procedure for the estimation of a flexible generalised distribution, notably the MacGillivray adaptation of the g-and-κ distribution. This distribution, described through its inverse cdf or quantile function, generalises the standard normal through extra parameters which together describe skewness and kurtosis. The standard quantile-based methods for estimating the parameters of generalised distributions are often arbitrary and do not rely on computation of the likelihood. MCMC, however, provides a simulation-based alternative for obtaining the maximum likelihood estimates of parameters of these distributions or for deriving posterior estimates of the parameters through a Bayesian framework. In this paper we adopt the latter approach, The proposed methodology is illustrated through an application in which the parameter of interest is slightly skewed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent deregulation in electricity markets worldwide has heightened the importance of risk management in energy markets. Assessing Value-at-Risk (VaR) in electricity markets is arguably more difficult than in traditional financial markets because the distinctive features of the former result in a highly unusual distribution of returns-electricity returns are highly volatile, display seasonalities in both their mean and volatility, exhibit leverage effects and clustering in volatility, and feature extreme levels of skewness and kurtosis. With electricity applications in mind, this paper proposes a model that accommodates autoregression and weekly seasonals in both the conditional mean and conditional volatility of returns, as well as leverage effects via an EGARCH specification. In addition, extreme value theory (EVT) is adopted to explicitly model the tails of the return distribution. Compared to a number of other parametric models and simple historical simulation based approaches, the proposed EVT-based model performs well in forecasting out-of-sample VaR. In addition, statistical tests show that the proposed model provides appropriate interval coverage in both unconditional and, more importantly, conditional contexts. Overall, the results are encouraging in suggesting that the proposed EVT-based model is a useful technique in forecasting VaR in electricity markets. (c) 2005 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.