6 resultados para singular perturbation

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During voluntary arm movements, the medial back muscles are differentially active. It is not known whether differential activity also occurs when the trunk is perturbed unpredictably, when the earliest responses are initiated by short-latency spinal mechanisms rather than voluntary commands. To assess this, in unpredictable and self-initiated conditions, a weight was dropped into a bucket that was held by the standing subject (n = 7). EMG activity was recorded from the deep (Deep MF), superficial (Sup MF) and lateral (Lat MF) lumbar multifidus, the thoracic erector spinae (ES) and the biceps brachii. With unpredictable perturbations, EMG activity was first noted in the biceps brachii, then the thoracic ES, followed synchronously in the components of the multifidus. During self-initiated perturbations, background EMG in the Deep MF increased two- to threefold, and the latency of the loading response decreased in six out of the seven subjects. In Sup MF and Lat MF, this increase in background EMG was not observed, and the latency of the loading response was increased. Short-latency reflex mechanisms do not cause differential action of the medial back muscles when the trunk is loaded. However, during voluntary tasks the central nervous system exerts a 'tuned response', which involves discrete activity in the deep and superficial components of the medial lumbar muscles in a way that varies according to the biomechanical action of the muscle component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, acoustic perturbation measurement has gained clinical and research popularity due to the ease of availability of commercial acoustic analysing software packages in the market. However, because the measurement itself depends critically on the accuracy of frequency tracking from the voice signal, researchers argue that perturbation measures are not suitable for analysing dysphonic voice samples, which are aperiodic in nature. This study compares the fundamental frequency, relative amplitude perturbation, shimmer percent and noise-to-harmonic ratio between a group of dysphonic and non-dysphonic subjects. One hundred and twelve dysphonic subjects ( 93 females and 19 males) and 41 non-dysphonic subjects ( 35 females and 6 males) participated in the study. All the 153 voice samples were categorized into type I ( periodic or nearly periodic), type II ( signals with subharmonic frequencies that approach the fundamental frequency) and type III ( aperiodic) signals. Only the type I ( periodic and nearly periodic) voice signals were acoustically analysed for perturbation measures. Results revealed that the dysphonic female group presented significantly lower fundamental frequency, significantly higher relative amplitude perturbation and shimmer percent values than the non-dysphonic female group. However, none of these three perturbation measures were able to differentiate between male dysphonic and male non-dysphonic subjects. The noise-to-harmonic ratio failed to differentiate between the dysphonic and non-dysphonic voices for both gender groups. These results question the sensitivity of acoustic perturbation measures in detecting dysphonia and suggest that contemporary acoustic perturbation measures are not suitable for analysing dysphonic voice signals, which are even nearly periodic. Copyright (C) 2005 S. Karger AG, Basel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the control mechanisms used in adapting to position-dependent forces, subjects performed 150 horizontal reaching movements over 25 cm in the presence of a position-dependent parabolic force field (PF). The PF acted only over the first 10 cm of the movement. On every fifth trial, a virtual mechanical guide (double wall) constrained subjects to move along a straight-line path between the start and target positions. Its purpose was to register lateral force to track formation of an internal model of the force field, and to look for evidence of possible alternative adaptive strategies. The force field produced a force to the right, which initially caused subjects to deviate in that direction. They reacted by producing deviations to the left, into the force field, as early as the second trial. Further adaptation resulted in rapid exponential reduction of kinematic error in the latter portion of the movement, where the greatest perturbation to the handpath was initially observed, whereas there was little modification of the handpath in the region where the PF was active. Significant force directed to counteract the PF was measured on the first guided trial, and was modified during the first half of the learning set. The total force impulse in the region of the PF increased throughout the learning trials, but it always remained less than that produced by the PF. The force profile did not resemble a mirror image of the PF in that it tended to be more trapezoidal than parabolic in shape. As in previous studies of force-field adaptation, we found that changes in muscle activation involved a general increase in the activity of all muscles, which increased arm stiffness, and selectively-greater increases in the activation of muscles which counteracted the PF. With training, activation was exponentially reduced, albeit more slowly than kinematic error. Progressive changes in kinematics and EMG occurred predominantly in the region of the workspace beyond the force field. We suggest that constraints on muscle mechanics limit the ability of the central nervous system to employ an inverse dynamics model to nullify impulse-like forces by generating mirror-image forces. Consequently, subjects adopted a strategy of slightly overcompensating for the first half of the force field, then allowing the force field to push them in the opposite direction. Muscle activity patterns in the region beyond the boundary of the force field were subsequently adjusted because of the relatively-slow response of the second-order mechanics of muscle impedance to the force impulse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let f : [0, 1] x R2 -> R be a function satisfying the Caxatheodory conditions and t(1 - t)e(t) epsilon L-1 (0, 1). Let a(i) epsilon R and xi(i) (0, 1) for i = 1,..., m - 2 where 0 < xi(1) < xi(2) < (...) < xi(m-2) < 1 - In this paper we study the existence of C[0, 1] solutions for the m-point boundary value problem [GRAPHICS] The proof of our main result is based on the Leray-Schauder continuation theorem.