8 resultados para single molecules

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fluorescence of single molecules coupled to a thermal bath is studied both experimentally and theoretically. The effect of different fluctuations on the coherence properties of resonance fluorescence is considered first. Coherence is measured in an interference experiment where a single molecule is used as a light source. A standard approach based on the optical Bloch equations apparently provides quite an accurate description of the interference experiment. Systems with long correlation times (where spectra are time dependent on any timescale) are considered next. It is shown that intensity-time-frequency correlation spectroscopy, which provides both high signal-to-noise ratio and high time resolution, is very suitable for such a case. The Bloch equations are further tested in an experiment where the shape of an excitation spectral line of a single molecule is accurately measured over six orders of magnitude of the exciting laser power. Significant deviations from the predictions of the Bloch equations are found. The role of critical parameters-the correlation time of the bath, the Rabi oscillation period, and the coupling constant between the bath and the molecule-is discussed. The paper also includes a short general introduction to the methodology of single-molecule studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A proposal for using single molecules as nanoprobes capable of detecting the trajectory of an elementary charge is discussed in detail. Presented numerical simulations prove that this singlemolecule technique allows determination of a three-dimensional single-electron displacement within a few seconds with an accurocy better than 0.006 nm. Surprisingly, this significantly exceeds the accuracy with which the probe;, molecule itself can be localized (given the same measuring time by means of single-molecule microscopy. It is also shown that the optimal concentration of probe molecules in the vicinity of:the electron (i.e. the concentration which provides the best accuracy of the inferred electron displacement) is of the order of 10(-5) m.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Optical Bloch equations are widely used for describing dynamics in a system consisting molecules, electromagnetic waves, and a thermal bath. We analyze applicability of these equations to a single molecule imbedded in a solid matrix. Classical Bloch equations and the limits of their applicability are derived from more general master equations. Simple and intuitively appealing picture based on stochastic Bloch equations shows that at low temperatures, contrary to common believes, a strong driving field can not only suppress but can also increase decay rates of Rabi oscillations. A physical system where predicted effects can be observed experimentally is suggested. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reviews a number of used and/or proposed ideas for optical detection of small particles including single molecules. Different techniques (direct absorption and scattering, interferometry, use of sub Poissonian statistics, cavity enhancement, and thermal lens detection) are compared in terms of signal-to-noise ratio. It is shown that scattering (resonance and non resonance) fundamentally remains the method of choice for most applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Particles that can be trapped in optical tweezers range from tens of microns down to tens of nanometres in size. Interestingly, this size range includes large macromolecules. We show experimentally, in agreement with theoretical expectations, that optical tweezers can be used to manipulate single molecules of polyethylene oxide suspended in water. The trapped molecules accumulate without aggregating, so this provides optical control of the concentration of macromolecules in solution. Apart from possible applications such as the micromanipulation of nanoparticles, nanoassembly, microchemistry, and the study of biological macromolecules, our results also provide insight into the thermodynamics of optical tweezers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infection of humans with the West Nile flavivirus principally occurs via tick and mosquito bites. Here, we document the expression of antigen processing and presentation molecules in West Nile virus (WNV)-infected human skin fibroblast (HFF) cells. Using a new Flavivirus-specific antibody, 4G4, we have analyzed cell surface human leukocyte antigen (HLA) expression on virus-infected cells at a single cell level. Using this approach, we show that West Nile Virus infection alters surface HLA expression on both infected HFF and neighboring uninfected HFF cells. Interestingly, increased surface HLA evident on infected HFF cultures is almost entirely due to virus-induced interferon (IFN)alpha/beta because IFNalpha/beta-neutralizing antibodies completely prevent increased surface HLA expression. In contrast, RT-PCR analysis indicates that WNV infection results in increased mRNAs for HLA-A, -B, and -C genes, and HLA-associated molecules low molecular weight polypeptide-2 (LMP-2) and transporter associated with antigen presentation-1 (TAP-1), but induction of these mRNAs is not diminished in HFF cells cultured with IFNalpha/beta-neutralizing antibodies. Taken together, these data support the idea that that both cytokine-dependent and cytokine-independent mechanisms account for WNV-induced HLA expression in human skin fibroblasts. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examine here the relative importance of different contributions to transport of light gases in single walled carbon nanotubes, using methane and hydrogen as examples. Transport coefficients at 298 K are determined using molecular dynamics simulation with atomistic models of the nanotube wall, from which the diffusive and viscous contributions are resolved using a recent approach that provides an explicit expression for the latter. We also exploit an exact theory for the transport of Lennard-Jones fluids at low density considering diffuse reflection at the tube wall, thereby permitting the estimation of Maxwell coefficients for the wall reflection. It is found that reflection from the carbon nanotube wall is nearly specular, as a result of which slip flow dominates, and the viscous contribution is small in comparison, even for a tube as large as 8.1 nm in diameter. The reflection coefficient for hydrogen is 3-6 times as large as that for methane in tubes of 1.36 nm diameter, indicating less specular reflection for hydrogen and greater sensitivity to atomic detail of the surface. This reconciles results showing that transport coefficients for hydrogen and methane, obtained in simulation, are comparable in tubes of this size. With increase in adsorbate density, the reflection coefficient increases, suggesting that adsorbate interactions near the wall serve to roughen the local potential energy landscape perceived by fluid molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The defect effect on hydrogen adsorption on single-walled carbon nanotubes (SWNTs) has been studied by using extensive molecular dynamics simulations and density functional theory (DFT) calculations. It indicates that the defects created on the exterior wall of the SWNTs by bombarding the tube wall with carbon atoms and C-2 dimers at a collision energy of 20 eV can enhance the hydrogen adsorption potential of the SWNTs substantially. The average adsorption energy for a H-2 molecule adsorbed on the exterior wall of a defected (10,10) SWNT is similar to 150 meV, while that for a H-2 molecule adsorbed on the exterior wall of a perfect (10,10) SWNT is similar to 104 meV. The H-2 sticking coefficient is very sensitive to temperature, and has a maximum value around 70 to 90 K. The electron density contours, the local density of states, and the electron transfers obtained from the DFT calculations clearly indicate that the H-2 molecules are all physisorbed on the SWNTs. At temperatures above 200 K, most of the H-2 molecules adsorbed on the perfect SWNT are soon desorbed, but the H-2 molecules can still remain on the defected SWNTs at 300 K. The detailed processes of H-2 molecules adsorbing on and desorbing from the (10,10) SWNTs are demonstrated.