96 resultados para semilinear partial differential equation
em University of Queensland eSpace - Australia
Resumo:
A robust semi-implicit central partial difference algorithm for the numerical solution of coupled stochastic parabolic partial differential equations (PDEs) is described. This can be used for calculating correlation functions of systems of interacting stochastic fields. Such field equations can arise in the description of Hamiltonian and open systems in the physics of nonlinear processes, and may include multiplicative noise sources. The algorithm can be used for studying the properties of nonlinear quantum or classical field theories. The general approach is outlined and applied to a specific example, namely the quantum statistical fluctuations of ultra-short optical pulses in chi((2)) parametric waveguides. This example uses a non-diagonal coherent state representation, and correctly predicts the sub-shot noise level spectral fluctuations observed in homodyne detection measurements. It is expected that the methods used wilt be applicable for higher-order correlation functions and other physical problems as well. A stochastic differencing technique for reducing sampling errors is also introduced. This involves solving nonlinear stochastic parabolic PDEs in combination with a reference process, which uses the Wigner representation in the example presented here. A computer implementation on MIMD parallel architectures is discussed. (C) 1997 Academic Press.
Resumo:
A software package that efficiently solves a comprehensive range of problems based on coupled complex nonlinear stochastic ODEs and PDEs is outlined. Its input and output syntax is formulated as a subset of XML, thus making a step towards a standard for specifying numerical simulations.
Resumo:
The conventional convection-dispersion model is widely used to interrelate hepatic availability (F) and clearance (Cl) with the morphology and physiology of the liver and to predict effects such as changes in liver blood flow on F and Cl. The extension of this model to include nonlinear kinetics and zonal heterogeneity of the liver is not straightforward and requires numerical solution of partial differential equation, which is not available in standard nonlinear regression analysis software. In this paper, we describe an alternative compartmental model representation of hepatic disposition (including elimination). The model allows the use of standard software for data analysis and accurately describes the outflow concentration-time profile for a vascular marker after bolus injection into the liver. In an evaluation of a number of different compartmental models, the most accurate model required eight vascular compartments, two of them with back mixing. In addition, the model includes two adjacent secondary vascular compartments to describe the tail section of the concentration-time profile for a reference marker. The model has the added flexibility of being easy to modify to model various enzyme distributions and nonlinear elimination. Model predictions of F, MTT, CV2, and concentration-time profile as well as parameter estimates for experimental data of an eliminated solute (palmitate) are comparable to those for the extended convection-dispersion model.
Resumo:
This paper addresses robust model-order reduction of a high dimensional nonlinear partial differential equation (PDE) model of a complex biological process. Based on a nonlinear, distributed parameter model of the same process which was validated against experimental data of an existing, pilot-scale BNR activated sludge plant, we developed a state-space model with 154 state variables in this work. A general algorithm for robustly reducing the nonlinear PDE model is presented and based on an investigation of five state-of-the-art model-order reduction techniques, we are able to reduce the original model to a model with only 30 states without incurring pronounced modelling errors. The Singular perturbation approximation balanced truncating technique is found to give the lowest modelling errors in low frequency ranges and hence is deemed most suitable for controller design and other real-time applications. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The developments of models in Earth Sciences, e.g. for earthquake prediction and for the simulation of mantel convection, are fare from being finalized. Therefore there is a need for a modelling environment that allows scientist to implement and test new models in an easy but flexible way. After been verified, the models should be easy to apply within its scope, typically by setting input parameters through a GUI or web services. It should be possible to link certain parameters to external data sources, such as databases and other simulation codes. Moreover, as typically large-scale meshes have to be used to achieve appropriate resolutions, the computational efficiency of the underlying numerical methods is important. Conceptional this leads to a software system with three major layers: the application layer, the mathematical layer, and the numerical algorithm layer. The latter is implemented as a C/C++ library to solve a basic, computational intensive linear problem, such as a linear partial differential equation. The mathematical layer allows the model developer to define his model and to implement high level solution algorithms (e.g. Newton-Raphson scheme, Crank-Nicholson scheme) or choose these algorithms form an algorithm library. The kernels of the model are generic, typically linear, solvers provided through the numerical algorithm layer. Finally, to provide an easy-to-use application environment, a web interface is (semi-automatically) built to edit the XML input file for the modelling code. In the talk, we will discuss the advantages and disadvantages of this concept in more details. We will also present the modelling environment escript which is a prototype implementation toward such a software system in Python (see www.python.org). Key components of escript are the Data class and the PDE class. Objects of the Data class allow generating, holding, accessing, and manipulating data, in such a way that the actual, in the particular context best, representation is transparent to the user. They are also the key to establish connections with external data sources. PDE class objects are describing (linear) partial differential equation objects to be solved by a numerical library. The current implementation of escript has been linked to the finite element code Finley to solve general linear partial differential equations. We will give a few simple examples which will illustrate the usage escript. Moreover, we show the usage of escript together with Finley for the modelling of interacting fault systems and for the simulation of mantel convection.
Resumo:
We introduce the study of dynamical quantum noise in Bose-Einstein condensates through numerical simulation of stochastic partial differential equations obtained using phase-space representations. We derive evolution equations for a single trapped condensate in both the positive-P and Wigner representations and perform simulations to compare the predictions of the two methods. The positive-P approach is found to be highly susceptible to the stability problems that have been observed in other strongly nonlinear, weakly damped systems. Using the Wigner representation, we examine the evolution of several quantities of interest using from a variety of choices of initial stare for the condensate and compare results to those for single-mode models. [S1050-2947(98)06612-8].
Resumo:
In this paper we propose a novel fast and linearly scalable method for solving master equations arising in the context of gas-phase reactive systems, based on an existent stiff ordinary differential equation integrator. The required solution of a linear system involving the Jacobian matrix is achieved using the GMRES iteration preconditioned using the diffusion approximation to the master equation. In this way we avoid the cubic scaling of traditional master equation solution methods and maintain the low temperature robustness of numerical integration. The method is tested using a master equation modelling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long lived isomerizing intermediates. (C) 2003 American Institute of Physics.
Resumo:
A general, fast wavelet-based adaptive collocation method is formulated for heat and mass transfer problems involving a steep moving profile of the dependent variable. The technique of grid adaptation is based on sparse point representation (SPR). The method is applied and tested for the case of a gas–solid non-catalytic reaction in a porous solid at high Thiele modulus. Accurate and convergent steep profiles are obtained for Thiele modulus as large as 100 for the case of slab and found to match the analytical solution.
Resumo:
We derive analytical solutions for the three-dimensional time-dependent buckling of a non-Newtonian viscous plate in a less viscous medium. For the plate we assume a power-law rheology. The principal, axes of the stretching D-ij in the homogeneously deformed ground state are parallel and orthogonal to the bounding surfaces of the plate in the flat state. In the model formulation the action of the less viscous medium is replaced by equivalent reaction forces. The reaction forces are assumed to be parallel to the normal vector of the deformed plate surfaces. As a consequence, the buckling process is driven by the differences between the in-plane stresses and out of plane stress, and not by the in-plane stresses alone as assumed in previous models. The governing differential equation is essentially an orthotropic plate equation for rate dependent material, under biaxial pre-stress, supported by a viscous medium. The differential problem is solved by means of Fourier transformation and largest growth coefficients and corresponding wavenumbers are evaluated. We discuss in detail fold evolutions for isotropic in-plane stretching (D-11 = D-22), uniaxial plane straining (D-22 = 0) and in-plane flattening (D-11 = -2D(22)). Three-dimensional plots illustrate the stages of fold evolution for random initial perturbations or initial embryonic folds with axes non-parallel to the maximum compression axis. For all situations, one dominant set of folds develops normal to D-11, although the dominant wavelength differs from the Biot dominant wavelength except when the plate has a purely Newtonian viscosity. However, in the direction parallel to D-22, there exist infinitely many modes in the vicinity of the dominant wavelength which grow only marginally slower than the one corresponding to the dominant wavelength. This means that, except for very special initial conditions, the appearance of a three-dimensional fold will always be governed by at least two wavelengths. The wavelength in the direction parallel to D-11 is the dominant wavelength, and the wavelength(s) in the direction parallel to D-22 is determined essentially by the statistics of the initial state. A comparable sensitivity to the initial geometry does not exist in the classic two-dimensional folding models. In conformity with tradition we have applied Kirchhoff's hypothesis to constrain the cross-sectional rotations of the plate. We investigate the validity of this hypothesis within the framework of Reissner's plate theory. We also include a discussion of the effects of adding elasticity into the constitutive relations and show that there exist critical ratios of the relaxation times of the plate and the embedding medium for which two dominant wavelengths develop, one at ca. 2.5 of the classical Biot dominant wavelength and the other at ca. 0.45 of this wavelength. We propose that herein lies the origin of parasitic folds well known in natural examples.
Resumo:
It is shown that coherent quantum simultons (simultaneous solitary waves at two different frequencies) can undergo quadrature-phase squeezing as they propagate through a dispersive chi((2)) waveguide. This requires a treatment of the coupled quantized fields including a quantized depleted pump field. A technique involving nonlinear stochastic parabolic partial differential equations using a nondiagonal coherent state representation in combination with an exact Wigner representation on a reduced phase space is outlined. We explicitly demonstrate that group-velocity matched chi((2)) waveguides which exhibit collinear propagation can produce quadrature-phase squeezed simultons. Quasi-phase-matched KTP waveguides, even with their large group-velocity mismatch between fundamental and second harmonic at 425 nm, can produce 3 dB squeezed bright pulses at 850 nm in the large phase-mismatch regime. This can be improved to more than 6 dB by using group-velocity matched waveguides.
Resumo:
Some efficient solution techniques for solving models of noncatalytic gas-solid and fluid-solid reactions are presented. These models include those with non-constant diffusivities for which the formulation reduces to that of a convection-diffusion problem. A singular perturbation problem results for such models in the presence of a large Thiele modulus, for which the classical numerical methods can present difficulties. For the convection-diffusion like case, the time-dependent partial differential equations are transformed by a semi-discrete Petrov-Galerkin finite element method into a system of ordinary differential equations of the initial-value type that can be readily solved. In the presence of a constant diffusivity, in slab geometry the convection-like terms are absent, and the combination of a fitted mesh finite difference method with a predictor-corrector method is used to solve the problem. Both the methods are found to converge, and general reaction rate forms can be treated. These methods are simple and highly efficient for arbitrary particle geometry and parameters, including a large Thiele modulus. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A technique based on laser light diffraction is shown to be successful in collecting on-line experimental data. Time series of floc size distributions (FSD) under different shear rates (G) and calcium additions were collected. The steady state mass mean diameter decreased with increasing shear rate G and increased when calcium additions exceeded 8 mg/l. A so-called population balance model (PBM) was used to describe the experimental data, This kind of model describes both aggregation and breakage through birth and death terms. A discretised PBM was used since analytical solutions of the integro-partial differential equations are non-existing. Despite the complexity of the model, only 2 parameters need to be estimated: the aggregation rate and the breakage rate. The model seems, however, to lack flexibility. Also, the description of the floc size distribution (FSD) in time is not accurate.
Resumo:
In this paper, we examine the postbuckling behavior of functionally graded material FGM rectangular plates that are integrated with surface-bonded piezoelectric actuators and are subjected to the combined action of uniform temperature change, in-plane forces, and constant applied actuator voltage. A Galerkin-differential quadrature iteration algorithm is proposed for solution of the non-linear partial differential governing equations. To account for the transverse shear strains, the Reddy higher-order shear deformation plate theory is employed. The bifurcation-type thermo-mechanical buckling of fully clamped plates, and the postbuckling behavior of plates with more general boundary conditions subject to various thermo-electro-mechanical loads, are discussed in detail. Parametric studies are also undertaken, and show the effects of applied actuator voltage, in-plane forces, volume fraction exponents, temperature change, and the character of boundary conditions on the buckling and postbuckling characteristics of the plates. (C) 2003 Elsevier Science Ltd. All rights reserved.