29 resultados para segmented polynomial

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endeostigmata are early derivative acariform mites, fossils of which are known from the Devonian. Extant species bear numerous plesiomorphies, the most striking being remnant opisthosomal segmentation. Also, many are all-female parthenogens with broad geographical distributions. Many of the species reported in the present study may represent clones of ancient Gondwana species. Before the present study only a handful of endeostigmatans had been reported from Australia. A key to the families of Endeostigmata is provided in the present paper, along with a review of the Australian fauna of the families Alicorhagiidae (new record), Grandjeanicidae (new record), Oehserchestidae (new record), and Terpnacaridae. Terpnacarus gibbosus (Womersley) is redescribed. A report of the first records of the cosmopolitan parthenogens Alicorhagia usitata Theron et al., Alycosmesis palmata (Oudemans), Stigmalychus veretrum Theron et al., Terpnacarus carolinaensis Theron, and Oehserchestes arboriger (Theron) in Australia is provided, along with a description of the new species Grandjeanicus theroni (Grandjeanicidae). Terpnacarus variolus Shiba and T. glebulentus Theron are junior synonyms of T. gibbosus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complementing our recent work on subspace wavepacket propagation [Chem. Phys. Lett. 336 (2001) 149], we introduce a Lanczos-based implementation of the Faber polynomial quantum long-time propagator. The original version [J. Chem. Phys. 101 (1994) 10493] implicitly handles non-Hermitian Hamiltonians, that is, those perturbed by imaginary absorbing potentials to handle unwanted reflection effects. However, like many wavepacket propagation schemes, it encounters a bottleneck associated with dense matrix-vector multiplications. Our implementation seeks to reduce the quantity of such costly operations without sacrificing numerical accuracy. For some benchmark scattering problems, our approach compares favourably with the original. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

What is the computational power of a quantum computer? We show that determining the output of a quantum computation is equivalent to counting the number of solutions to an easily computed set of polynomials defined over the finite field Z(2). This connection allows simple proofs to be given for two known relationships between quantum and classical complexity classes, namely BQP subset of P-#P and BQP subset of PP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of TPU nanocomposites were prepared by incorporating organically modified layered silicates with controlled particle size. To our knowledge, this is the first study into the effects of layered silicate diameter in polymer nanocomposites utilizing the same mineral for each size fraction. The tensile properties of these materials were found to be highly dependent upon the size of the layered silicates. A decrease in disk diameter was associated with a sharp upturn in the stress-strain curve and a pronounced increase in tensile strength. Results from SAXS/SANS experiments showed that the layered silicates did not affect the bulk TPU microphase structure and the morphological response of the host TPU to deformation or promote/hinder strain-induced soft segment crystallization. The improved tensile properties of the nanocomposites containing the smaller nanofillers resulted from the layered silicates aligning in the direction of strain and interacting with the TPU sequences via secondary bonding. This phenomenon contributes predominantly above 400% strain once the microdomain architecture has largely been disassembled. Large tactoids that are unable to align in the strain direction lead to concentrated tensile stresses between the polymer and filler, instead of desirable shear stresses, resulting in void formation and reduced tensile properties. In severe cases, such as that observed for the composite containing the largest silicate, these voids manifest visually as stress whitening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study addresses the problem of predicting the properties of multicomponent systems from those of corresponding binary systems. Two types of multicomponent polynomial models have been analysed. A probabilistic interpretation of the parameters of the Polynomial model, which explicitly relates them with the Gibbs free energies of the generalised quasichemical reactions, is proposed. The presented treatment provides a theoretical justification for such parameters. A methodology of estimating the ternary interaction parameter from the binary ones is presented. The methodology provides a way in which the power series multicomponent models, where no projection is required, could be incorporated into the Calphad approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two organically modified layered silicates (with small and large diameters) were incorporated into three segmented polyurethanes with various degrees of microphase separation. Microphase separation increased with the molecular weight of the poly(hexamethylene oxide) soft segment. The molecular weight of the soft segment did not influence the amount of polyurethane intercalating the interlayer spacing. Small-angle neutron scattering and differential scanning calorimetry data indicated that the layered silicates did not affect the microphase morphology of any host polymer, regardless of the particle diameter. The stiffness enhancement on filler addition increased as the microphase separation of the polyurethane decreased, presumably because a greater number of urethane linkages were available to interact with the filler. For comparison, the small nanofiller was introduced into a polyurethane with a poly(tetramethylene oxide) soft segment, and a significant increase in the tensile strength and a sharper upturn in the stress-strain curve resulted. No such improvement occurred in the host polymers with poly(hexamethylene oxide) soft segments. It is proposed that the nanocomposite containing the more hydrophilic and mobile poly(tetramethylene oxide) soft segment is capable of greater secondary bonding between the polyurethane chains and the organosilicate surface, resulting in improved stress transfer to the filler and reduced molecular slippage. (c) 2006 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Segmented polyurethane nanocomposites containing three different size fractions of SomasifTM ME100 (synthetic fluoromica) have been prepared via solvent casting. The platelet size was adjusted via a proprietary milling process, and average diameters of approximately 500 nm, 100 nm and 30 nm were measured via TEM. To the best of our knowledge this is the first time the effect of aspect ratio has been studied with the same t-o-t structured mineral. The mechanical properties of these nanocomposites have been found to be highly dependent upon the platelet size. Depending on the aspect ratio and surface treatment selected, significant improvements in tensile strength can be achieved with a minimal reduction in resilience: a problem encountered with elastomeric layered silicate nanocomposites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This is the first in a series of three articles which aimed to derive the matrix elements of the U(2n) generators in a multishell spin-orbit basis. This is a basis appropriate to many-electron systems which have a natural partitioning of the orbital space and where also spin-dependent terms are included in the Hamiltonian. The method is based on a new spin-dependent unitary group approach to the many-electron correlation problem due to Gould and Paldus [M. D. Gould and J. Paldus, J. Chem. Phys. 92, 7394, (1990)]. In this approach, the matrix elements of the U(2n) generators in the U(n) x U(2)-adapted electronic Gelfand basis are determined by the matrix elements of a single Ll(n) adjoint tensor operator called the del-operator, denoted by Delta(j)(i) (1 less than or equal to i, j less than or equal to n). Delta or del is a polynomial of degree two in the U(n) matrix E = [E-j(i)]. The approach of Gould and Paldus is based on the transformation properties of the U(2n) generators as an adjoint tensor operator of U(n) x U(2) and application of the Wigner-Eckart theorem. Hence, to generalize this approach, we need to obtain formulas for the complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. The nonzero shift coefficients are uniquely determined and may he evaluated by the methods of Gould et al. [see the above reference]. In this article, we define zero-shift adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis which are appropriate to the many-electron problem. By definition, these are proportional to the corresponding two-shell del-operator matrix elements, and it is shown that the Racah factorization lemma applies. Formulas for these coefficients are then obtained by application of the Racah factorization lemma. The zero-shift adjoint reduced Wigner coefficients required for this procedure are evaluated first. All these coefficients are needed later for the multishell case, which leads directly to the two-shell del-operator matrix elements. Finally, we discuss an application to charge and spin densities in a two-shell molecular system. (C) 1998 John Wiley & Sons.