165 resultados para scattering parameters measurement
em University of Queensland eSpace - Australia
Resumo:
The effects of ammonium sulphate concentration on the osmotic second virial coefficient (B-AA/M-A) for equine serum albumin (pH 5.6, 20 degrees C) have been examined by sedimentation equilibrium. After an initial steep decrease with increasing ammonium sulphate concentration, B-AA/M-A assumes an essentially concentration-independent magnitude of 8-9 ml/g. Such behaviour conforms with the statistical-mechanical prediction that a sufficient increase in ionic strength should effectively eliminate the contributions of charge interactions to B-AA/M-A but have no effect on the covolume contribution (8.4 ml/g for serum albumin). A similar situation is shown to apply to published sedimentation equilibrium data for lysozyme (pH 4.5). Although termed osmotic second virial coefficients and designated as such (B-22), the negative values obtained in published light scattering studies of both systems have been described incorrectly because of the concomitant inclusion of the protein-salt contribution to thermodynamic nonideality of the protein. Those negative values are still valid predictors of conditions conducive to crystal growth inasmuch as they do reflect situations in which there is net attraction between protein molecules. However, the source of attraction responsible for the negative virial coefficient stems from the protein-salt rather than the protein-protein contribution, which is necessarily positive. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The complex design and development of a planar multilayer phased array antenna in microstrip technology can be simplified using two commercially available design tools 1) Ansoft Ensemble and 2) HP-EEsof Touchstone. In the approach presented here, Touchstone is used to design RF switches and phase shifters whose scattering parameters are incorporated in Ensemble simulations using its black box tool. Using this approach, Ensemble is able to fully analyze the performance of radiating and beamforming layers of a phased array prior to its manufacturing. This strategy is demonstrated in a design example of a 12-element linearly-polarized circular phased array operating at L band. A comparison between theoretical and experimental results of the array is demonstrated.
Resumo:
Measurement while drilling (MWD) techniques can provide a useful tool to aid drill and blast engineers in open cut mining. By avoiding time consuming tasks such as scan-lines and rock sample collection for laboratory tests, MWD techniques can not only save time but also improve the reliability of the blast design by providing the drill and blast engineer with the information specially tailored for use. While most mines use a standard blast pattern and charge per blasthole, based on a single rock factor for the entire bench or blast region, information derived from the MWD parameters can improve the blast design by providing more accurate rock properties for each individual blasthole. From this, decisions can be made on the most appropriate type and amount of explosive charge to place in a per blasthole or to optimise the inter-hole timing detonation time of different decks and blastholes. Where real-time calculations are feasible, the system could extend the present blast design even be used to determine the placement of subsequent holes towards a more appropriate blasthole pattern design like asymmetrical blasting.
Resumo:
Water-sampler equilibrium partitioning coefficients and aqueous boundary layer mass transfer coefficients for atrazine, diuron, hexazionone and fluometuron onto C18 and SDB-RPS Empore disk-based aquatic passive samplers have been determined experimentally under a laminar flow regime (Re = 5400). The method involved accelerating the time to equilibrium of the samplers by exposing them to three water concentrations, decreasing stepwise to 50% and then 25% of the original concentration. Assuming first-order Fickian kinetics across a rate-limiting aqueous boundary layer, both parameters are determined computationally by unconstrained nonlinear optimization. In addition, a method of estimation of mass transfer coefficients-therefore sampling rates-using the dimensionless Sherwood correlation developed for laminar flow over a flat plate is applied. For each of the herbicides, this correlation is validated to within 40% of the experimental data. The study demonstrates that for trace concentrations (sub 0.1 mu g/L) and these flow conditions, a naked Empore disk performs well as an integrative sampler over short deployments (up to 7 days) for the range of polar herbicides investigated. The SDB-RPS disk allows a longer integrative period than the C18 disk due to its higher sorbent mass and/or its more polar sorbent chemistry. This work also suggests that for certain passive sampler designs, empirical estimation of sampling rates may be possible using correlations that have been available in the chemical engineering literature for some time.
Resumo:
Conventional bioimpedance spectrometers measure resistance and reactance over a range of frequencies and, by application of a mathematical model for an equivalent circuit (the Cole model), estimate resistance at zero and infinite frequencies. Fitting of the experimental data to the model is accomplished by iterative, nonlinear curve fitting. An alternative fitting method is described that uses only the magnitude of the measured impedances at four selected frequencies. The two methods showed excellent agreement when compared using data obtained both from measurements of equivalent circuits and of humans. These results suggest that operational equivalence to a technically complex, frequency-scanning, phase-sensitive BIS analyser could be achieved from a simple four-frequency, impedance-only analyser.
Resumo:
We present a method for measuring single spins embedded in a solid by probing two-electron systems with a single-electron transistor (SET). Restrictions imposed by the Pauli principle on allowed two-electron states mean that the spin state of such systems has a profound impact on the orbital states (positions) of the electrons, a parameter which SET's are extremely well suited to measure. We focus on a particular system capable of being fabricated with current technology: a Te double donor in Si adjacent to a Si/SiO2, interface and lying directly beneath the SET island electrode, and we outline a measurement strategy capable of resolving single-electron and nuclear spins in this system. We discuss the limitations of the measurement imposed by spin scattering arising from fluctuations emanating from the SET and from lattice phonons. We conclude that measurement of single spins, a necessary requirement for several proposed quantum computer architectures, is feasible in Si using this strategy.
Resumo:
Current theoretical thinking about dual processes in recognition relies heavily on the measurement operations embodied within the process dissociation procedure. We critically evaluate the ability of this procedure to support this theoretical enterprise. We show that there are alternative processes that would produce a rough invariance in familiarity (a key prediction of the dual-processing approach) and that the process dissociation procedure does not have the power to differentiate between these alternative possibilities. We also show that attempts to relate parameters estimated by the process dissociation procedure to subjective reports (remember-know judgments) cannot differentiate between alternative dual-processing models and that there are problems with some of the historical evidence and with obtaining converging evidence. Our conclusion is that more specific theories incorporating ideas about representation and process are required.
Resumo:
To investigate the ability of ultrasonography to estimate musactivity, we measured architectural parameters (pennation angles, fascicle lengths, and muscle thickness) of several human muscles (tibialis anterior, biceps brachii, brachialis, transversus abdominis, obliquus internus abdominis, and obliquus externus abdominis) during isometric contractions of from 0 to 100% maximal voluntary contraction (MVC). Concurrently, electromyographic (EMG) activity was measured with surface (tibialis anterior only) or fine-wire electrodes. Most architectural parameters changed markedly with contractions up to 30% MVC but changed little at higher levels of contraction. Thus, ultrasound imaging can be used to detect low levels of muscle activity but cannot discriminate between moderate and strong contractions. Ultrasound measures could reliably detect changes in EMG of as little as 4% MVC (biceps muscle thickness), 5% MVC (brachialis muscle thickness), or 9% MVC (tibialis anterior pennation angle). They were generally less sensitive to changes in abdominal muscle activity, but it was possible to reliably detect contractions of 12% MVC in transversus abdominis (muscle length) and 22% MVC in obliquus internus (muscle thickness). Obliquus externus abdominis thickness did not change consistently with muscle contraction, so ultrasound measures of thickness cannot be used to detect activity of this muscle. Ultrasound imaging can thus provide a non-invasive method of detecting isometric muscle contractions of certain individual muscles.
Resumo:
We show how the measurement induced model of quantum computation proposed by Raussendorf and Briegel ( 2001, Phys. Rev. Letts., 86, 5188) can be adapted to a nonlinear optical interaction. This optical implementation requires a Kerr nonlinearity, a single photon source, a single photon detector and fast feed forward. Although nondeterministic optical quantum information proposals such as that suggested by KLM ( 2001, Nature, 409, 46) do not require a Kerr nonlinearity they do require complex reconfigurable optical networks. The proposal in this paper has the benefit of a single static optical layout with fixed device parameters, where the algorithm is defined by the final measurement procedure.
Resumo:
We present a new method of laser frequency locking in which the feedback signal is directly proportional to the detuning from an atomic transition, even at detunings many times the natural linewidth of the transition. Our method is a form of sub-Doppler polarization spectroscopy, based on measuring two Stokes parameters (I-2 and I-3) of light transmitted through a vapor cell. It extends the linear capture range of the lock loop by as much as an order of magnitude and provides frequency discrimination equivalent to or better than those of other commonly used locking techniques. (C) 2004 Optical Society of America
Resumo:
We investigate a scheme that makes a quantum nondemolition (QND) measurement of the excitation level of a mesoscopic mechanical oscillator by utilizing the anharmonic coupling between two beam bending modes. The nonlinear coupling between the two modes shifts the resonant frequency of the readout oscillator in proportion to the excitation level of the system oscillator. This frequency shift may be detected as a phase shift of the readout oscillation when driven on resonance. We derive an equation for the reduced density matrix of the system oscillator, and use this to study the conditions under which discrete jumps in the excitation level occur. The appearance of jumps in the actual quantity measured is also studied using the method of quantum trajectories. We consider the feasibility of the scheme for experimentally accessible parameters.
Resumo:
Objective To determine the range of various cardiac parameters using echocardiography in apparently normal, healthy English Bull Terriers. Design Fourteen English Bull Terriers were selected for study. Cardiac auscultation of the parents of these dogs was normal. Echocardiographic examination of one parent of each animal showed: no mitral or aortic valve abnormalities; no myocardial lesions; no two dimensional evidence of fixed or dynamic left ventricular outflow tract obstruction; and no systolic aortic or left ventricular outflow tract turbulence on colour flow Doppler examination. The 14 selected dogs did not have arrhythmias or murmurs, and on echocardiographic examination had similar findings to their parents. Systolic blood pressure was measured in all dogs and they had no clinical evidence of Bull Terrier polycystic kidney disease or Bull Terrier hereditary nephritis. Procedure All dogs were auscultated and subjected to a sequential global echocardiographic assessment of the heart, including two dimensional long and short axis, and colour flow Doppler interrogation of the mitral and aortic valves. Dimensional measurements, including those from the left atrium, aortic annulus and left ventricle, were taken from a right parasternal window, and derived values such as fractional shortening, stroke volume and left atrial to aortic annulus ratio were calculated. Peak systolic aortic velocity was measured from the left parasternal window using two dimensional-guided pulsed wave Doppler with angle correction. Systolic blood pressure was measured using a Doppler monitor. The absence of Bull Terrier polycystic kidney disease was determined using renal ultrasonography, and of Bull Terrier hereditary nephritis using urinary protein to creatinine ratio. Results These 14 dogs had greater left ventricular wall thickness and smaller aortic root diameters than those reported as normal for other breeds of comparable body size. Left atrial dimensions were also larger, however this may have been due to the maximising method of measurement. These apparently normal English Bull Terriers also had higher aortic velocities than those reported for other breeds, possibly due to a smaller aortic root diameter or other anatomic substrate of the left ventricular outflow tract, lower systemic vascular resistance, or breed-specific normal left ventricular hypertrophy. While these dogs were selected to be as close to normal as possible, the breed may have a particular anatomy that produces abnormal left ventricular echocardiographic parameters. Conclusion These echocardiographic parameters may be used to diagnose left ventricular outflow tract obstruction and left ventricular hypertrophy, and inaccurate diagnoses may result if breed-specific values are not used.