31 resultados para scalar scattering
em University of Queensland eSpace - Australia
Resumo:
The structures of mixed Langmuir (floating) monolayers and Langmuir-Blodgett (LB) films of a phenanthroline-porphyrin with cadmium arachidate (PhenPor + CdAr) have been investigated by synchrotron X-ray grazing incidence diffraction (GIXD) and specular X-ray reflectivity (SXR). GIXD measurements of the floating monolayers showed only one peak, arising from the CdAr domains in the films, at a scattering angle of 21.5 degrees. This is consistent with a hexagonal structure (alpha = 4.77 Angstrom). The correlation length in these domains is 250 Angstrom. GMD measurements of the LB films, however, show two sets of diffraction features: one arises from CdAr domains with a rectangular in-plane structure (alpha = 7.44 Angstrom and b = 4.90 Angstrom) and a correlation length of 85 Angstrom; the other is from porphyrin domains with an oblique in-plane structure (alpha (p) 15.2 Angstrom, b(p) = 8.86 Angstrom, and gamma (p) = 80 degrees) and a correlation length of 105 Angstrom. These dimensions are consistent with the surface pressure-area isotherm measurements and indicate that the two components are immiscible. The thickness of the bilayer is 57 Angstrom, and there is no correlation between the bilayers. Introduction of a trigger compound does not alter the structure of the films but slightly increases the bilayer thickness. The SXR measurements of the floating monolayers also support the suggested immiscibility of the two components in the films.
Resumo:
We study the scattering of the quantized electromagnetic field from a linear, dispersive dielectric using the scattering formalism for quantum fields. The medium is modeled as a collection of harmonic oscillators with a number of distinct resonance frequencies. This model corresponds to the Sellmeir expansion, which is widely used to describe experimental data for real dispersive media. The integral equation for the interpolating field in terms of the in field is solved and the solution used to find the out field. The relation between the ill and out creation and annihilation operators is found that allows one to calculate the S matrix for this system. In this model, we find that there are absorption bands, but the input-output relations are completely unitary. No additional quantum-noise terms are required.
Resumo:
We develop a new iterative filter diagonalization (FD) scheme based on Lanczos subspaces and demonstrate its application to the calculation of bound-state and resonance eigenvalues. The new scheme combines the Lanczos three-term vector recursion for the generation of a tridiagonal representation of the Hamiltonian with a three-term scalar recursion to generate filtered states within the Lanczos representation. Eigenstates in the energy windows of interest can then be obtained by solving a small generalized eigenvalue problem in the subspace spanned by the filtered states. The scalar filtering recursion is based on the homogeneous eigenvalue equation of the tridiagonal representation of the Hamiltonian, and is simpler and more efficient than our previous quasi-minimum-residual filter diagonalization (QMRFD) scheme (H. G. Yu and S. C. Smith, Chem. Phys. Lett., 1998, 283, 69), which was based on solving for the action of the Green operator via an inhomogeneous equation. A low-storage method for the construction of Hamiltonian and overlap matrix elements in the filtered-basis representation is devised, in which contributions to the matrix elements are computed simultaneously as the recursion proceeds, allowing coefficients of the filtered states to be discarded once their contribution has been evaluated. Application to the HO2 system shows that the new scheme is highly efficient and can generate eigenvalues with the same numerical accuracy as the basic Lanczos algorithm.
Resumo:
We present an efficient and robust method for calculating state-to-state reaction probabilities utilising the Lanczos algorithm for a real symmetric Hamiltonian. The method recasts the time-independent Artificial Boundary Inhomogeneity technique recently introduced by Jang and Light (J. Chem. Phys. 102 (1995) 3262) into a tridiagonal (Lanczos) representation. The calculation proceeds at the cost of a single Lanczos propagation for each boundary inhomogeneity function and yields all state-to-state probabilities (elastic, inelastic and reactive) over an arbitrary energy range. The method is applied to the collinear H + H-2 reaction and the results demonstrate it is accurate and efficient in comparison with previous calculations. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
An efficient Lanczos subspace method has been devised for calculating state-to-state reaction probabilities. The method recasts the time-independent wave packet Lippmann-Schwinger equation [Kouri , Chem. Phys. Lett. 203, 166 (1993)] inside a tridiagonal (Lanczos) representation in which action of the causal Green's operator is affected easily with a QR algorithm. The method is designed to yield all state-to-state reaction probabilities from a given reactant-channel wave packet using a single Lanczos subspace; the spectral properties of the tridiagonal Hamiltonian allow calculations to be undertaken at arbitrary energies within the spectral range of the initial wave packet. The method is applied to a H+O-2 system (J=0), and the results indicate the approach is accurate and stable. (C) 2002 American Institute of Physics.
Resumo:
In this paper. we present the results of quantum dynamical simulations of the S (D-1) + H-2 insertion reaction on a newly developed potential energy surface (J. Chem. Phys. 2001, 114, 320). State-to-state reaction probabilities. product state distributions, and initial-state resolved cumulative reaction probabilities from a given incoming reactant channel are obtained from a time-independent wave packet analysis, performed within a single Lanczos subspace. Integral reaction cross sections are then estimated by J-shifting method and compared with the results from molecular beam experiment and QCT calculations.
Resumo:
In this paper we explore the relative performance of two recently developed wave packet methodologies for reactive scattering, namely the real wave packet Chebyshev domain propagation of Gray and Balint-Kurti [J. Chem. Phys. 108, 950 (1998)] and the Lanczos subspace wave packet approach of Smith [J. Chem. Phys. 116, 2354 (2002); Chem. Phys. Lett. 336, 149 (2001)]. In the former method, a modified Schrodinger equation is employed to propagate the real part of the wave packet via the well-known Chebyshev iteration. While the time-dependent wave packet from the modified Schrodinger equation is different from that obtained using the standard Schrodinger equation, time-to-energy Fourier transformation yields wave functions which differ only trivially by normalization. In the Lanczos subspace approach the linear system of equations defining the action of the Green operator may be solved via either time-dependent or time-independent methods, both of which are extremely efficient due to the simple tridiagonal structure of the Hamiltonian in the Lanczos representation. The two different wave packet methods are applied to three dimensional reactive scattering of H+O-2 (total J=0). State-to-state reaction probabilities, product state distributions, as well as initial-state-resolved cumulative reaction probabilities are examined. (C) 2002 American Institute of Physics.
Resumo:
We have recently developed a scaleable Artificial Boundary Inhomogeneity (ABI) method [Chem. Phys. Lett.366, 390–397 (2002)] based on the utilization of the Lanczos algorithm, and in this work explore an alternative iterative implementation based on the Chebyshev algorithm. Detailed comparisons between the two iterative methods have been made in terms of efficiency as well as convergence behavior. The Lanczos subspace ABI method was also further improved by the use of a simpler three-term backward recursion algorithm to solve the subspace linear system. The two different iterative methods are tested on the model collinear H+H2 reactive state-to-state scattering.
Resumo:
Flows of complex fluids need to be understood at both macroscopic and molecular scales, because it is the macroscopic response that controls the fluid behavior, but the molecular scale that ultimately gives rise to rheological and solid-state properties. Here the flow field of an entangled polymer melt through an extended contraction, typical of many polymer processes, is imaged optically and by small-angle neutron scattering. The dual-probe technique samples both the macroscopic stress field in the flow and the microscopic configuration of the polymer molecules at selected points. The results are compared with a recent tube model molecular theory of entangled melt flow that is able to calculate both the stress and the single-chain structure factor from first principles. The combined action of the three fundamental entangled processes of reptation, contour length fluctuation, and convective constraint release is essential to account quantitatively for the rich rheological behavior. The multiscale approach unearths a new feature: Orientation at the length scale of the entire chain decays considerably more slowly than at the smaller entanglement length.
Resumo:
Multipole expansion of an incident radiation field-that is, representation of the fields as sums of vector spherical wavefunctions-is essential for theoretical light scattering methods such as the T-matrix method and generalised Lorenz-Mie theory (GLMT). In general, it is theoretically straightforward to find a vector spherical wavefunction representation of an arbitrary radiation field. For example, a simple formula results in the useful case of an incident plane wave. Laser beams present some difficulties. These problems are not a result of any deficiency in the basic process of spherical wavefunction expansion, but are due to the fact that laser beams, in their standard representations, are not radiation fields, but only approximations of radiation fields. This results from the standard laser beam representations being solutions to the paraxial scalar wave equation. We present an efficient method for determining the multipole representation of an arbitrary focussed beam. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
We extend our Lanczos subspace time-independent wave packet method [J. Chem. Phys. 116 (2002) 2354] to investigate the issue of symmetry contaminations for the challenging deep-well H + O-2 reaction. Our central objective is to address the issue of whether significant symmetry contamination can occur if a wavepacket initially possessing the correct O-O exchange symmetry is propagated over tens of thousands of recursive steps using a basis which does not explicitly enforce the correct symmetry, and if so how seriously this affects the results. We find that symmetry contamination does exist where the symmetry constraint is not explicitly enforced in the basis. While it affects individual resonances and the associated peak amplitudes, the overall shape of the more averaged quantities such as total reaction probabilities and vibrational branching ratios are not seriously affected. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We show how a quantum property, a geometric phase, associated with scattering states can be exhibited in nanoscale electronic devices. We propose an experiment to use interference to directly measure the effect of this geometric phase. The setup involves a double-path interferometer, adapted from that used to measure the phase evolution of electrons as they traverse a quantum dot (QD). Gate voltages on the QD could be varied cyclically and adiabatically, in a manner similar to that used to observe quantum adiabatic charge pumping. The interference due to the geometric phase results in oscillations in the current collected in the drain when a small bias across the device is applied. We illustrate the effect with examples of geometric phases resulting from both Abelian and non-Abelian gauge potentials.
Resumo:
Geometric phases of scattering states in a ring geometry are studied on the basis of a variant of the adiabatic theorem. Three timescales, i.e., the adiabatic period, the system time and the dwell time, associated with adiabatic scattering in a ring geometry play a crucial role in determining geometric phases, in contrast to only two timescales, i.e., the adiabatic period and the dwell time, in an open system. We derive a formula connecting the gauge invariant geometric phases acquired by time-reversed scattering states and the circulating (pumping) current. A numerical calculation shows that the effect of the geometric phases is observable in a nanoscale electronic device.