2 resultados para salt-stress

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Salinity acts to inhibit plant access to soil water by increasing the osmotic strength of the soil solution. As the soil dries, the soil solution becomes increasingly concentrated, further limiting plant access to soil water. An experiment was conducted to examine the effect of salt on plant available water in a heavy clay soil, using a relatively salt tolerant species, wheat ‘Kennedy’, and a more salt sensitive species, chickpea ‘Jimbour’. Sodium chloride was applied to Red Ferrosol at 10 rates from 0 to 3 g/kg. Plants were initially maintained at field capacity. After 3 weeks, plants had become established and watering was ceased. The plants then grew using the water stored in the soil. Once permanent wilting point was reached plants were harvested, and soil water content was measured. The results showed that without salt stress, wheat and chickpea extracted approximately the same amount of water. However, as the salt concentration increased, the ability of chickpea to extract water was severely impaired, while wheat’s ability to extract water was not affected over the range of concentrations examined. Growth of both wheat and chickpea was reduced even from low salt concentrations. Possible explanations for this are that the effect on growth is due to Cl- toxicity and that this occurs at lower concentrations than the osmotic effect of salinity, or that the metabolic demands of maintaining plant water balance and extracting soil water under saline conditions result in reduced growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitric oxide (NO) is essential for normal function of the cardiovascular system. This study has determined whether chronic administration of L-arginine, the biological precursor of NO, attenuates the development of structural and functional changes in hearts and blood vessels of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Uninephrectomized rats treated with DOCA (25 mg every 4th day sc) and 1% NaCl in the drinking water for 4 wk were treated with L-arginine (5% in food, 3.4 +/- 0.3 g.kg body wt(-1).day(-1)). Changes in cardiovascular structure and function were determined by echocardiography, microelectrode studies, histology, and studies in isolated hearts and thoracic aortic rings. DOCA-salt hypertensive rats developed hypertension, left ventricular hypertrophy with increased left ventricular wall thickness and decreased ventricular internal diameter, increased inflammatory cell infiltration, increased ventricular interstitial and perivascular collagen deposition, increased passive diastolic stiffness, prolonged action potential duration, increased oxidative stress, and inability to increase purine efflux in response to an increased workload. L-Arginine markedly attenuated or prevented these changes and also normalized the reduced efficacy of norepinephrine and acetylcholine in isolated thoracic aortic rings of DOCA-salt hypertensive rats. This study suggests that a functional NO deficit in blood vessels and heart due to decreased NO synthase activity or increased release of reactive oxygen species such as superoxide may be a key change initiating many aspects of the cardiovascular impairment observed in DOCA-salt hypertensive rats. These changes can be prevented or attenuated by administration of L-arginine.