5 resultados para runtime bloat
em University of Queensland eSpace - Australia
Resumo:
An inherent incomputability in the specification of a functional language extension that combines assertions with dynamic type checking is isolated in an explicit derivation from mathematical specifications. The combination of types and assertions (into "dynamic assertion-types" - DATs) is a significant issue since, because the two are congruent means for program correctness, benefit arises from their better integration in contrast to the harm resulting from their unnecessary separation. However, projecting the "set membership" view of assertion-checking into dynamic types results in some incomputable combinations. Refinement of the specification of DAT checking into an implementation by rigorous application of mathematical identities becomes feasible through the addition of a "best-approximate" pseudo-equality that isolates the incomputable component of the specification. This formal treatment leads to an improved, more maintainable outcome with further development potential.
Resumo:
Workflow systems have traditionally focused on the so-called production processes which are characterized by pre-definition, high volume, and repetitiveness. Recently, the deployment of workflow systems in non-traditional domains such as collaborative applications, e-learning and cross-organizational process integration, have put forth new requirements for flexible and dynamic specification. However, this flexibility cannot be offered at the expense of control, a critical requirement of business processes. In this paper, we will present a foundation set of constraints for flexible workflow specification. These constraints are intended to provide an appropriate balance between flexibility and control. The constraint specification framework is based on the concept of pockets of flexibility which allows ad hoc changes and/or building of workflows for highly flexible processes. Basically, our approach is to provide the ability to execute on the basis of a partially specified model, where the full specification of the model is made at runtime, and may be unique to each instance. The verification of dynamically built models is essential. Where as ensuring that the model conforms to specified constraints does not pose great difficulty, ensuring that the constraint set itself does not carry conflicts and redundancy is an interesting and challenging problem. In this paper, we will provide a discussion on both the static and dynamic verification aspects. We will also briefly present Chameleon, a prototype workflow engine that implements these concepts. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Workflow technology has delivered effectively for a large class of business processes, providing the requisite control and monitoring functions. At the same time, this technology has been the target of much criticism due to its limited ability to cope with dynamically changing business conditions which require business processes to be adapted frequently, and/or its limited ability to model business processes which cannot be entirely predefined. Requirements indicate the need for generic solutions where a balance between process control and flexibility may be achieved. In this paper we present a framework that allows the workflow to execute on the basis of a partially specified model where the full specification of the model is made at runtime, and may be unique to each instance. This framework is based on the notion of process constraints. Where as process constraints may be specified for any aspect of the workflow, such as structural, temporal, etc. our focus in this paper is on a constraint which allows dynamic selection of activities for inclusion in a given instance. We call these cardinality constraints, and this paper will discuss their specification and validation requirements.
Resumo:
Workflow technology is currently being deployed in quite diverse domains. However, the element of change is present in some degree and form in almost all domains. A workflow implementation that does not support the process of change will not benefit the organization in the long run. Change can be manifested in different forms in workflow processes. In this paper, we first present a categorization of workflow change characteristics and divide workflow processes into dynamic, adaptive and flexible processes. We define flexibility as the ability of the workflow process to execute on the basis of a loosely, or partially specified model, where the full specification of the model is made at runtime, and may be unique to each instance. To provide a modeling framework that offers true flexibility, we need to consider the factors, which influence the paths of (unique) instances together with the process definition. We advocate an approach that aims at making the process of change part of the workflow process itself. We introduce the notion of an open instance that consists of a core process and several pockets of flexibility, and present a framework based on this notion, which makes use of special build activities that provide the functionality to integrate the process of defining a change, into the open workflow instance.