4 resultados para reverse martensitic transformation

em University of Queensland eSpace - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this article is to demonstrate that the apparent controversy between the infinitesimal deformation (ID) approach and the phenomenological theory of martensitic transformations (PTMTs) in predicting the crystallographic characteristics of a martensitic transformation is entirely based on unjustified approximations associated with the way in which the ID calculations are performed. When applied correctly, the ID approach is shown to be absolutely identical to the PTMT. Nevertheless, there may be some advantages in using the ID approach. In particular, it is somewhat simpler than the PTMT; it is based on a physical concept that is easier to understand and, most important, it may provide a tool for investigating some of the features of martensitic transformations that have eluded explanation via the PTMT.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-resolution transmission electron microscopy (HRTEM) was used to study the olivine to spinel transformation. HRTEM structure images of Mg2GeO4 olivine deformed under a pressure of 6 GPa at 600 degreesC clearly show that a shear mechanism dominates the transformation. The transformation is not a nucleation and growth mechanism. It also differs in certain crucial aspects from the type of martensitic transformation proposed before. During the transformation, it is a shear movement that brings the oxygen anions to their positions in the spinel structure. An edge dislocation following each shear then puts the cations in their spinel sites. The Burgers' vector of each dislocation is perpendicular to the anion shear direction. (C) 2004 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The convergent beam Kikuchi line diffraction technique has been used to accurately determine the orientation relationships between bainitic ferrite and retained austenite in a hard bainitic steel. A reproducible orientation relationship has been uniquely observed for both the upper and lower bainite. It is [GRAPHICS] However, the habit plane of upper bainite is different from that of lower bainite. The former has habit plane that is either within 5 degrees of (221)(A) or of (259)(A). The latter only corresponds with a habit plane that is within 5 degrees of (259)(A). The determined orientation relationship is completely consistent with reported results determined using the same technique with an accuracy of +/- 0.5 degrees in lath martensite in an Fe-20 wt.% Ni-6 wt.% Mn alloy and in a low carbon low alloy steel. It also agrees well with the orientation relationship between granular bainite and austenite in an Fe-19 wt.% Ni-3.5 wt.% Mn-0.15 wt.% C steel. Hence it is believed that, at least from a crystallographic point view, the bainite transformation has the characteristics of martensitic transformation. (c) 2006 Elsevier B.V. All rights reserved.