14 resultados para reservoir rocks

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use the finite element method to solve coupled problems between pore-fluid flow and heat transfer in fluid-saturated porous rocks. In particular, we investigate the effects of both the hot pluton intrusion and topographically driven horizontal flow on the distributions of the pore-flow velocity and temperature in large-scale hydrothermal systems. Since general mineralization patterns are strongly dependent on distributions of both the pore-fluid velocity and temperature fields, the modern mineralization theory has been used to predict the general mineralization patterns in several realistic hydrothermal systems. The related numerical results have demonstrated that: (1) The existence of a hot intrusion can cause an increase in the maximum value of the pore-fluid velocity in the hydrothermal system. (2) The permeability of an intruded pluton is one of the sensitive parameters to control the pore-fluid flow, heat transfer and ore body formation in hydrothermal systems. (3) The maximum value of the pore-fluid velocity increases when the bottom temperature of the hydrothermal system is increased. (4) The topographically driven flow has significant effects on the pore-fluid flow, temperature distribution and precipitation pattern of minerals in hydrothermal systems. (5) The size of the computational domain may have some effects on the pore-fluid flow and heat transfer, indicating that the size of a hydrothermal system may affect the pore-fluid flow and heat transfer within the system. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An equivalent algorithm is proposed to simulate thermal effects of the magma intrusion in geological systems, which are composed of porous rocks. Based on the physical and mathematical equivalence, the original magma solidification problem with a moving boundary between the rock and intruded magma is transformed into a new problem without the moving boundary but with a physically equivalent heat source. From the analysis of an ideal solidification model, the physically equivalent heat source has been determined in this paper. The major advantage in using the proposed equivalent algorithm is that the fixed finite element mesh with a variable integration time step can be employed to simulate the thermal effect of the intruded magma solidification using the conventional finite element method. The related numerical results have demonstrated the correctness and usefulness of the proposed equivalent algorithm for simulating the thermal effect of the intruded magma solidification in geological systems. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known of the prevalence of Cryptosporidium and Giardia parasites in sheep and the genotypes that they harbor, although potentially sheep may contribute significantly to contamination of watersheds. In the present study, conducted in Western Australia, a total of 1,647 sheep fecal samples were screened for the presence of Cryptosporidium and Giardia spp. using microscopy, and a subset (n = 500) were screened by PCR and genotyped. Analysis revealed that although both parasites were detected in a high proportion of samples by PCR (44% and 26% for Giardia and Cryptosporidium spp., respectively), with the exception of one Cryptosporidium hominis isolate, the majority of isolates genotyped are not commonly found in humans. These results suggest that the public health risk of sheep-derived Cryptosporidium and Giardia spp. in catchment areas and effluent may be overestimated and warrant further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solidification of intruded magma in porous rocks can result in the following two consequences: (1) the heat release due to the solidification of the interface between the rock and intruded magma and (2) the mass release of the volatile fluids in the region where the intruded magma is solidified into the rock. Traditionally, the intruded magma solidification problem is treated as a moving interface (i.e. the solidification interface between the rock and intruded magma) problem to consider these consequences in conventional numerical methods. This paper presents an alternative new approach to simulate thermal and chemical consequences/effects of magma intrusion in geological systems, which are composed of porous rocks. In the proposed new approach and algorithm, the original magma solidification problem with a moving boundary between the rock and intruded magma is transformed into a new problem without the moving boundary but with the proposed mass source and physically equivalent heat source. The major advantage in using the proposed equivalent algorithm is that a fixed mesh of finite elements with a variable integration time-step can be employed to simulate the consequences and effects of the intruded magma solidification using the conventional finite element method. The correctness and usefulness of the proposed equivalent algorithm have been demonstrated by a benchmark magma solidification problem. Copyright (c) 2005 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variable aspect ratio porphyroblasts deformed in non-coaxial flow. and internally containing rotated relicts of an external foliation, can be used to characterise plane strain flow regimes. The distribution obtained by plotting the orientation of the long axis of such grains, classified by aspect ratio, against the orientation of the internal foliation is potentially a sensitive gauge of both the bulk shear strain (as previously suggested) and kinematic vorticity number. We illustrate the method using rotated biotite porphyroblasts in the Alpine Schist: a sequence of mid-crustal rocks that have been ramped to the surface along the Alpine Fault. a major transpressional plate boundary. Results indicate that, at distances greater than or equal to similar to1 km from the fault, the rocks have undergone a combination of irrotational fattening and dextral-oblique, normal-sense shear, with a bulk shear strain of similar to0.6 and kinematic vorticity number of similar to0.2. The vorticity analysis is compatible with estimates of strongly oblate bulk strain of similar to 75% maximum shortening. Dextral-reverse transpressional flow characterises higher strain S-tectonite mylonite within similar to1 km of the Alpine Fault. These relationships provide insight into the kinematics of flow and distribution of strain in the hangingwall of the Alpine Fault and place constraints on numerical mechanical models for the exhumation of these mid-crustal rocks. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bandas del Sur Formation preserves a Quaternary extra-caldera record of central phonolitic explosive volcanism of the Las Canadas volcano at Tenerife. Volcanic rocks are bimodal in composition, being predominantly phonolitic pyroclastic deposits, several eruptions of which resulted in summit caldera collapse, alkali basaltic lavas erupted from many fissures around the flanks. For the pyroclastic deposits, there is a broad range of pumice glass compositions from phonotephrite to phonolite. The phonolite pyroclastic deposits are also characterized by a diverse, 7-8-phase phenocryst assemblage (alkali feldspar + biotite + sodian diopside + titanomagnetite + ilmenite + nosean-hauyne + titanite + apatite) with alkali feldspar dominant, in contrast to interbedded phonolite lavas that typically have lower phenocryst contents and lack hydrous phases. Petrological and geochemical data are consistent with fractional crystallization (involving the observed phenocryst assemblages) as the dominant process in the development of phonolite magmas. New stratigraphically constrained data indicate that petrological and geochemical differences exist between pyroclastic deposits of the last two explosive cycles of phonolitic volcanism. Cycle 2 (0.85-0.57 Ma) pyroclastic fall deposits commonly show a cryptic compositional zonation indicating that several eruptions tapped chemically, and probably thermally stratified magma systems. Evidence for magma mixing is most widespread in the pyroclastic deposits of Cycle 3 (0.37-0.17 Ma), which includes the presence of reversely and normally zoned phenocrysts, quenched mafic glass blebs in pumice, banded pumice, and bimodal to polymodal phenocryst compositional populations. Syn-eruptive mixing events involved mostly phonolite and tephriphonolite magmas, whereas a pre-eruptive mixing event involving basaltic magma is recorded in several banded pumice-bearing ignimbrites of Cycle 3. The periodic addition and mixing of basaltic magma ultimately may have triggered several eruptions. Recharge and underplating by basaltic magma is interpreted to have elevated sulphur contents (occurring as an exsolved gas phase) in the capping phonolitic magma reservoir. This promoted nosean-hauyne crystallization over nepheline, elevated SO3 contents in apatite, and possibly resulted in large, climatologically important SO2 emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a component of archaeological investigations on the central Queensland coast, a series of five marine shell specimens live-collected between A.D. 1904 and A.D. 1929 and 11 shell/ charcoal paired samples from archaeological contexts were radiocarbon dated to determine local DeltaR values. The object of the study was to assess the potential influence of localized variation in marine reservoir effect in accurately determining the age of marine and estuarine shell from archaeological deposits in the area. Results indicate that the routinely applied DeltaR value of -5 +/- 35 for northeast Australia is erroneously calculated. The determined values suggest a minor revision to Reimer and Reimer's (2000) recommended value for northeast Australia from DeltaR = +11 +/- 5 to + 12 +/- 7, and specifically for central Queensland to DeltaR = +10 +/- 7, for near-shore open marine environments. In contrast, data obtained from estuarine shell/charcoal pairs demonstrate a general lack of consistency, suggesting estuary-specific patterns of variation in terrestrial carbon input and exchange with the open ocean. Preliminary data indicate that in some estuaries, at some time periods, a DeltaR value of more than - 155 +/- 55 may be appropriate, In estuarine contexts in central Queensland, a localized estuary-specific correction factor is recommended to account for geographical and temporal variation in C-14 activity. (C) 2002 Wiley Periodicals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hanging wall of the Alpine Fault near Franz Josef Glacier has been exhumed during the past similar to2-3 m.y. providing a sample of the ductilely deformed middle crust of a modem obliquely convergent orogen. Presently exposed rocks of the Pacific Plate are inferred to have undergone several phases of ductile deformation as they moved westward above a mid-crustal detachment. Initially they were transpressed across the outboard part of the orogen, resulting in oblate fabrics with a down-dip stretch. Later, they encountered the Alpine Fault, experiencing an oblique-slip backshearing on vertical planes. This escalator-like deformation tilted and thinned the incoming crust onto that crustal-scale oblique ramp. This style of hanging wall deformation may affect only the most rapidly uplifting, central part of the Southern Alps because of the low flexural rigidity of the crust in that region and its displacement over a relatively sharp ramp-angle at depth. A 3D transpressive flow affected mylonites locally near the fault, but their shear direction remained parallel to plate motion, ruling out ductile 'extrusion' as an important process in this orogen. Outside the mylonite zone, late Cenozoic shortening is inferred to be modest (30-40%), as measured from deformation of younger biotite grains. Oblique collision is dominated by translation on the Alpine Fault, and rocks migrate rapidly through the deforming zone, preventing the accumulation of large finite strains. Transpression may play a minor role in oblique collision. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The particle-based Lattice Solid Model (LSM) was developed to provide a basis to study the physics of rocks and the nonlinear dynamics of earthquakes (MORA and PLACE, 1994; PLACE and MORA, 1999). A new modular and flexible LSM approach has been developed that allows different microphysics to be easily included in or removed from the model. The approach provides a virtual laboratory where numerical experiments can easily be set up and all measurable quantities visualised. The proposed approach provides a means to simulate complex phenomena such as fracturing or localisation processes, and enables the effect of different micro-physics on macroscopic behaviour to be studied. The initial 2-D model is extended to allow three-dimensional simulations to be performed and particles of different sizes to be specified. Numerical bi-axial compression experiments under different confining pressure are used to calibrate the model. By tuning the different microscopic parameters (such as coefficient of friction, microscopic strength and distribution of grain sizes), the macroscopic strength of the material and can be adjusted to be in agreement with laboratory experiments, and the orientation of fractures is consistent with the theoretical value predicted based on Mohr-Coulomb diagram. Simulations indicate that 3-D numerical models have different macroscopic properties than in 2-D and, hence, the model must be recalibrated for 3-D simulations. These numerical experiments illustrate that the new approach is capable of simulating typical rock fracture behaviour. The new model provides a basis to investigate nucleation, rupture and slip pulse propagation in complex fault zones without the previous model limitations of a regular low-level surface geometry and being restricted to two-dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to establish the relationship between solute lipophilicity and skin penetration (including flux and concentration behavior), we examined the in vitro penetration and membrane concentration of a series of homologous alcohols (C2-C10) applied topically in aqueous solutions to human epidermal, full-thickness, and dermal membranes. The partitioning/distribution of each alcohol between the donor solution, stratum corneum, viable epidermis, dermis, and receptor phase compartments was determined during the penetration process and separately to isolated samples of each tissue type. Maximum flux and permeability coefficients are compared for each membrane and estimates of alcohol diffusivity are made based on flux/concentration data and also the related tissue resistance (the reciprocal of permeability coefficient) for each membrane type. The permeability coefficient increased with increasing lipophilicity to alcohol C8 (octanol) with no further increase for C10 (decanol). Log vehicle:stratum corneum partition coefficients were related to logP , and the concentration of alcohols in each of the tissue layers appeared to increase with lipophilicity. No difference was measured in the diffusivity of smaller more polar alcohols in the three membranes; however, the larger more lipophilic solutes showed slower diffusivity values. The study showed that the dermis may be a much more lipophilic environment than originally believed and that distribution of smaller nonionized solutes into local tissues below a site of topical application may be estimated based on knowledge of their lipophilicity alone.