26 resultados para relay racing
em University of Queensland eSpace - Australia
Resumo:
This study presents the first analysis of the impact of NASCAR sponsorship announcements on the stock prices of sponsoring firms. The primary finding of the study-that NASCAR sponsorship announcements were accompanied by the largest increases in shareholder wealth ever recorded in the marketing literature in response to a voluntary marketing program-represents a striking and unambiguous stock market endorsement of the sponsorships. Indeed, the 24 sponsors analyzed in this study experienced mean increases in shareholder wealth of over $300 million dollars, net of all of the costs associated with the sponsorships. A multiple regression analysis of firm-specific stock price changes and select corporate and sponsorship attributes indicates that NASCAR sponsorships with more successful racing teams, corporate (as opposed to product or divisional) sponsorships, and sponsorships with direct ties to the consumer automotive industry are all positively correlated with perceived sponsorship success, while corporate cash flow per share (a well-known proxy for agency conflicts within the firm) is negatively related with shareholder approval.
Resumo:
In empirical studies of Evolutionary Algorithms, it is usually desirable to evaluate and compare algorithms using as many different parameter settings and test problems as possible, in border to have a clear and detailed picture of their performance. Unfortunately, the total number of experiments required may be very large, which often makes such research work computationally prohibitive. In this paper, the application of a statistical method called racing is proposed as a general-purpose tool to reduce the computational requirements of large-scale experimental studies in evolutionary algorithms. Experimental results are presented that show that racing typically requires only a small fraction of the cost of an exhaustive experimental study.
Resumo:
Racing algorithms have recently been proposed as a general-purpose method for performing model selection in machine teaming algorithms. In this paper, we present an empirical study of the Hoeffding racing algorithm for selecting the k parameter in a simple k-nearest neighbor classifier. Fifteen widely-used classification datasets from UCI are used and experiments conducted across different confidence levels for racing. The results reveal a significant amount of sensitivity of the k-nn classifier to its model parameter value. The Hoeffding racing algorithm also varies widely in its performance, in terms of the computational savings gained over an exhaustive evaluation. While in some cases the savings gained are quite small, the racing algorithm proved to be highly robust to the possibility of erroneously eliminating the optimal models. All results were strongly dependent on the datasets used.
Resumo:
Systemic infection activates the hypothalamic-pituitary-adrenal (HPA) axis, and brainstem catecholamine cells have been shown to contribute to this response. However, recent work also suggests an important role for the central amygdala (CeA). Because direct connections between the CeA and the hypothalamic apex of the HPA axis are minimal, the present study investigated whether the bed nucleus of the stria terminalis (BNST) might act as a relay between them. This was done by using an animal model of acute systemic infection involving intravascular delivery of the proinflammatory cytokine interleukin-1 (IL-1, 1 g/kg). Unilateral ibotenic acid lesions encompassing the ventral BNST significantly reduced both IL-1-induced increases in Fos immunoreactivity in corticotropin-releasing factor (CRF) cells of the hypothalamic paraventricular nucleus (PVN) and corresponding increases in adrenocorticotropic hormone (ACTH) secretion. Similar lesions had no effect on CRF cell responses to physical restraint, suggesting that the effects of BNST lesions were not due to a nonspecific effect on stress responses. In further studies, we examined the functional connections between PVN, BNST, and CeA by combining retrograde tracing with mapping of IL-1-induced increases in Fos in BNST and CeA cells. In the case of the BNST, these studies showed that systemic IL-1 administration recruits ventral BNST cells that project directly to the PVN. In the case of the CeA, the results obtained were consistent with an arrangement whereby lateral CeA cells recruited by systemic IL-1 could regulate the activity of medial CeA cells projecting directly to the BNST. In conclusion, the present findings are consistent with the hypothesis that the BNST acts as a relay between the CeA and PVN, thereby contributing to CeA modulation of hypophysiotropic CRF cell responses to systemic administration of IL-1.
Resumo:
Previous studies have shown that the medial prefrontal cortex can suppress the hypothalamic-pituitary-adrenal axis response to stress. However, this effect appears to vary with the type of stressor. Furthermore, the absence of direct projections between the medial prefrontal cortex and corticotropin-releasing factor cells at the apex of the hypothalamic-pituitary-adrenal axis suggest that other brain regions must act as a relay when this inhibitory mechanism is activated. In the present study, we first established that electrolytic lesions involving the prelimbic and infralimbic medial prefrontal cortex increased plasma adrenocorticotropic hormone levels seen in response to a physical stressor, the systemic delivery of interleukin-1beta. However, medial prefrontal cortex lesions did not alter plasma adrenocorticotropic hormone levels seen in response to a psychological stressor, noise. To identify brain regions that might mediate the effect of medial prefrontal cortex lesions on hypothalamic-pituitary-adrenal axis responses to systemic interleukin-1beta, we next mapped the effects of similar lesions on interleukin-1beta-induced Fos expression in regions previously shown to regulate the hypothalamic-pituitary-adrenal axis response to this stressor. It was found that medial prefrontal cortex lesions reduced the number of Fos-positive cells in the ventral aspect of the bed nucleus of the stria terminalis. However, the final experiment, which involved combining retrograde tracing with Fos immunolabelling, revealed that bed nucleus of the stria terminalis-projecting medial prefrontal cortex neurons were largely separate from medial prefrontal cortex neurons recruited by systemic interleukin-1beta, an outcome that is difficult to reconcile with a simple medial prefrontal cortex-bed nucleus of the stria terminalis-corticotropin-releasing factor cell control circuit.
Resumo:
Both physical and psychological stressors recruit catecholamine cells (CA) located in the ventrolateral medulla (VLM) and the nucleus of the solitary tract (NTS). In the case of physical stressors, this effect is initiated by signals that first access the central nervous system at or below the level of the medulla. For psychological stressors, however, CA cell recruitment depends on higher structures within the neuraxis. Indeed, we have recently provided evidence of a pivotal role for the medial amygdala (MeA) in this regard, although such a role must involve a relay, as MeA neurons do not project directly to the medulla. However, some of the MeA neurons that respond to psychological stress have been found to project to the hypothalamic paraventricular nucleus (PVN), a structure that provides significant input to the medulla. To determine whether the PVN might regulate medullary CA cell responses to psychological stress, animals were prepared with unilateral injections of the neurotoxin ibotenic acid into the PVN (Experiment 1), or with unilateral injections of the retrograde tracer wheat germ agglutinin-gold (WGA-Au) into the CA cell columns of the VLM or NTS (Experiment 2). Seven days later, animals were subjected to a psychological stressor (restraint; 15 minutes), and their brains were subsequently processed for Fos plus appropriate cytoplasmic markers (Experiment 1), or Fos plus WGA-Au (Experiment 2). PVN lesions significantly suppressed the stress-related induction of Fos in both VLM and NTS CA cells, whereas tracer deposits in the VLM or NTS retrogradely labeled substantial numbers of PVN cells that were also Fos-positive after stress. Considered in concert with previous results, these data suggest that the activation of medullary CA cells in response to psychological stress may involve a critical input from the PVN. (C) 2004 Wiley-Liss, Inc.
Resumo:
A telephone survey of 51 National Hunt racing yards with 1140 horses in training was made in April and May 2003 to establish the incidence of exertional rhabdomyolysis syndrome during the previous year. A case-control study was used to investigate the risk factors for the syndrome in eight yards selected on the basis that cases had been confirmed by the analysis of serum muscle enzymes. The overall incidence of syndrome was 6 center dot 1 cases per 100 horses per year, and 55 per cent of the yards reported at least one case. The risk factors identified were sex, the average length of the training gallop, and the type of horse (steeplechaser, bumper/unraced or hurdler). There were no significant associations with the horses' temperament, age or Timeform rating.
Resumo:
Tau is a major microtubule-associated protein of axons and is also the principal component of the paired helical filaments (PHFs) that comprise the neurofibrillary tangles found in Alzheimer's disease and other tauopathies. Besides phosphorylation of tau on serine and threonine residues in both normal tau and tau from neurofibrillary tangles, Tyr-18 was reported to be a site of phosphorylation by the Src-family kinase Fyn. We examined whether tyrosine residues other than Tyr-18 are phosphorylated in tau and whether other tyrosine kinases might phosphorylate tau. Using mass spectrometry, we positively identified phosphorylated Tyr-394 in PHF-tau from an Alzheimer brain and in human fetal brain tau. When wild-type human tau was transfected into fibroblasts or neuroblastoma cells, treatment with pervanadate caused tau to become phosphorylated on tyrosine by endogenous kinases. By replacing each of the five tyrosines in tau with phenylalanine, we identified Tyr-394 as the major site of tyrosine phosphorylation in tau. Tyrosine phosphorylation of tau was inhibited by PP2 (4-amino-5-(4-chlorophenyl-7-(t-butyl) pyrazolo[3,4-d] pyrimidine), which is known to inhibit Src-family kinases and c-Abl. Cotransfection of tau and kinases showed that Tyr-18 was the major site for Fyn phosphorylation, but Tyr-394 was the main residue for Abl. In vitro, Abl phosphorylated tau directly. Abl could be coprecipitated with tau and was present in pretangle neurons in brain sections from Alzheimer cases. These results show that phosphorylation of tau on Tyr-394 is a physiological event that is potentially part of a signal relay and suggest that Abl could have a pathogenic role in Alzheimer's disease.
Resumo:
Purpose: Although the body-mass management strategies of athletes in high-participation weight-category sports such as wrestling have been thoroughly investigated, little is known about such practices among lightweight rowers. This study examined the body-mass management practices of lightweight rowers before competition and compared these with current guidelines of the International Federation of Rowing Association (FISA). Quantification of nutrient intake in the 1-2 h between weigh-in and racing was also sought. Methods: Lightweight rowers (N = 100) competing in a national regatta completed a questionnaire that assessed body-mass management practices during the 4 wk before and throughout a regatta plus recovery strategies after weigh-in. Biochemical data were collected immediately after weigh-in to validate questionnaire responses. Responses were categorized according to gender and age category (Senior B or younger than 23 yr old, i.e., U23, Senior A or OPEN, i.e., open age limit) for competition. Results: Most athletes (male U23 76.5%, OPEN 92.3%; female U23 84.0%, OPEN 94.1%) decreased their body mass in the weeks before the regatta at rates compliant with FISA guidelines. Gradual dieting, fluid restriction, and increased training load were the most popular methods of body-mass management. Although the importance of recovery after weigh-in was recognized by athletes, nutrient intake and especially sodium (male U23 5.3 ± 4.9, OPEN 7.7 ± 5.9; female U23 5.7 ± 6.8, OPEN 10.2 ± 5.4 mg-kg(-1)) and fluid intake (male U23 12.1 ± 7.1, OPEN 13.5 ± 8.1; female U23 9.4 ± 7.4, OPEN 14.8 ± 6.9 mL.kg(-1)) were below current sports nutrition recommendations. Conclusion: Few rowers were natural lightweights; the majority reduced their body mass in the weeks before a regatta. Nutritional recovery strategies implemented by lightweight rowers after weigh-in were not consistent with current guidelines.