92 resultados para regulatory mechanisms

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bistability and switching are two important aspects of the genetic regulatory network of phage. Positive and negative feedbacks are key regulatory mechanisms in this network. By the introduction of threshold values, the developmental pathway of A phage is divided into different stages. If the protein level reaches a threshold value, positive or negative feedback will be effective and regulate the process of development. Using this regulatory mechanism, we present a quantitative model to realize bistability and switching of phage based on experimental data. This model gives descriptions of decisive mechanisms for different pathways in induction. A stochastic model is also introduced for describing statistical properties of switching in induction. A stochastic degradation rate is used to represent intrinsic noise in induction for switching the system from the lysogenic pathway to the lysis pathway. The approach in this paper represents an attempt to describe the regulatory mechanism in genetic regulatory network under the influence of intrinsic noise in the framework of continuous models. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bistability arises within a wide range of biological systems from the A phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. in this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Microarray transcript profiling has the potential to illuminate the molecular processes that are involved in the responses of cattle to disease challenges. This knowledge may allow the development of strategies that exploit these genes to enhance resistance to disease in an individual or animal population. Results: The Bovine Innate Immune Microarray developed in this study consists of 1480 characterised genes identified by literature searches, 31 positive and negative control elements and 5376 cDNAs derived from subtracted and normalised libraries. The cDNA libraries were produced from 'challenged' bovine epithelial and leukocyte cells. The microarray was found to have a limit of detection of 1 pg/mu g of total RNA and a mean slide-to-slide correlation co-efficient of 0.88. The profiles of differentially expressed genes from Concanavalin A ( ConA) stimulated bovine peripheral blood lymphocytes were determined. Three distinct profiles highlighted 19 genes that were rapidly up-regulated within 30 minutes and returned to basal levels by 24 h; 76 genes that were upregulated between 2 - 8 hours and sustained high levels of expression until 24 h and 10 genes that were down-regulated. Quantitative real-time RT-PCR on selected genes was used to confirm the results from the microarray analysis. The results indicate that there is a dynamic process involving gene activation and regulatory mechanisms re-establishing homeostasis in the ConA activated lymphocytes. The Bovine Innate Immune Microarray was also used to determine the cross-species hybridisation capabilities of an ovine PBL sample. Conclusion: The Bovine Innate Immune Microarray has been developed which contains a set of well-characterised genes and anonymous cDNAs from a number of different bovine cell types. The microarray can be used to determine the gene expression profiles underlying innate immune responses in cattle and sheep.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spatial and temporal association of muscle-specific tropomyosin gene expression, and myofibril assembly and degradation during metamorphosis is analyzed in the gastropod mollusc. Haliotis rufescens. Metamorphosis of tile planktonic larva to the benthic juvenile includes rearrangement and atrophy of specific larval muscles, and biogenesis of the new juvenile muscle system. The major muscle of the larva - the larval retractor muscle - reorganizes at metamorphosis, with two suites of cells having different fates. The ventral cells degenerate, while the dorsal cells become part of the developing juvenile mantle musculature. Prior to these changes in myofibrillar structure, tropomyosin mRNA prevalence declines until undetectable in the ventral cells, while increasing markedly in the dorsal cells. In the foot muscle and right shell muscle, tropomyosin mRNA levels remain relatively stable, even trough myofibril content increases. In a population of median mesoderm cells destined to form de novo the major muscle of the juvenile and adult (the columellar muscle), tropomyosin expression is initiated at 45 h after induction of metamorphosis. Myofibrillar filamentous actin is not detected in these cells until about 7 days later. Given that patterns of tropomyosin mRNA accumulation in relation to myofibril assembly and disassembly differ significantly among the four major muscle systems examined, we suggest that different regulatory mechanisms, probably operating at both transcriptional and post-transcriptional levels, control the biogenesis and atrophy of different larval and postlarval muscles at metamorphosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

All cells require inorganic sulfate for normal function. Sulfate is among the most important macronutrients; in cells and is the fourth most abundant anion in human plasma (300 muM). Sulfate is the major sulfur source in many organisms, and because it is a hydrophilic anion that cannot passively cross the lipid bilayer of cell membranes, all cells require a mechanism for sulfate influx and efflux to ensure an optimal supply of sulfate in the body. The class of proteins involved in moving sulfate into or out of cells is called sulfate transporters. To date, numerous sulfate transporters have been identified in tissues and cells from many origins. These include the renal sulfate transporters NaSi-1 and sat-1, the ubiquitously expressed diastrophic dysplasia sulfate transporter DTDST, the intestinal sulfate transporter DRA that is linked to congenital chloride diarrhea, and the erythrocyte anion exchanger AE1. These transporters have only been isolated in the last 10-15 years, and their physiological roles and contributions to body sulfate homeostasis are just now beginning to be determined. This review focuses on the structural and functional properties of mammalian sulfate transporters and highlights some of regulatory mechanisms that control their expression in vivo, under normal physiological and pathophysiological states.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: The physiological examination of amylase production by Aeromonas hydrophila JMP636 and identification of the mechanism of regulation. Methods and Results: Aeromonas hydrophila JMP636 was grown with single, then dual carbon sources; the growth cycle was followed and amylase activity throughout was monitored. The levels of cAMP, a known secondary messenger for the regulatory gene crp, were also examined. Amylase activity was regulated by catabolite repression. Physiological studies revealed that JMP636 exhibited both diauxic growth, with two carbon sources, and the 'acid toxicity' effect on glucose. The crp gene was cloned, expressed and inactivated from the JMP636 chromosome. Catabolite repression of amylase production and the 'acid toxicity' effect both require crp and were linked to cAMP levels. Conclusions: Regulation of amylase production was predicted to follow the model CRP-mediated cAMP-dependent Escherichia coli catabolite regulation system. Significance and Impact of the Study: This work provides an understanding of the physiology of the opportunistic pathogen Aer. hydrophila through identification of the mechanism of catabolite repression of amylase production and the existence of crp within this cell. It also provides a broader knowledge of global gene regulation and suggests regulatory mechanisms of other Aer. hydrophila gene/s.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have shown previously that both humoral and cellular immune responses to heat shock protein 60 (HSP60) are elevated in chronic periodontitis patients compared with non-diseased subjects. The aim of the present study was to determine whether periodontal treatment could influence the level of serum antibodies to human HSP60 and Porphyromonas gingivalis GroEL, a bacterial homologue of human HSP60. Sera were obtained from 21 patients with moderate to advanced chronic periodontitis at the baseline examination and again after completion of treatment. Antibody levels were determined using an enzyme-linked immunosorbent assay. The mean anti-P. gingivalis GroEL antibody levels were down-regulated significantly by periodontal treatment when recombinant P. gingivalis GroEL was used as an antigen, whereas antibody levels to P. gingivalis GroEL-specific peptide were significantly elevated following successful periodontal therapy. The mean level of anti-human HSP60 antibody remained unchanged although individual levels of antibody either increased or decreased after periodontal treatment, suggesting that synthesis of these antibodies might be regulated independently during the course of periodontal infection. Although their regulatory mechanisms in chronic infection are not understood, further study would provide insight not only into the role of these antibodies in the pathogenesis of periodontitis but also into the possible link between periodontitis and systemic diseases such as coronary heart disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alternative splicing is widespread in mammalian gene expression, and variant splice patterns are often specific to different stages of development, particular tissues or a disease state. There is a need to systematically collect data on alternatively spliced exons, introns and splice isoforms, and to annotate this data. The Alternative Splicing Database consortium has been addressing this need, and is committed to maintaining and developing a value-added database of alternative splice events, and of experimentally verified regulatory mechanisms that mediate splice variants. In this paper we present two of the products from this project: namely, a database of computationally delineated alternative splice events as seen in alignments of EST/cDNA sequences with genome sequences, and a database of alternatively spliced exons collected from literature. The reported splice events are from nine different organisms and are annotated for various biological features including expression states and cross-species conservation. The data are presented on our ASD web pages (http://www.ebi.ac.uk/asd).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a chloride channel present in many cells. In cardiomyocytes, we report that multiple exon 1 usage and alternative splicing produces four CFTR transcripts, with different 5'-untranslated regions, CFTRTRAD-139, CFTR-1C/-1A, CFTR-1C, and CFTR-1B. CFTR transcripts containing the novel upstream exons (exons -1C, -1B, and -1A) represent more than 90% of cardiac expressed CFTR mRNA. Regulation of cardiac CFTR expression, in response to developmental and pathological stimuli, is exclusively due to the modulation of CFTR-1C and CFTR-1C/-1A expression. Upstream open reading frames have been identified in the 5'-untranslated regions of all CFTR transcripts that, in conjunction with adjacent stem-loop structures, modulate the efficiency of translation initiation at the AUG codon of the main CFTR coding region in CFTRTRAD-139 and CFTR-1C/-1A transcripts. Exon(-1A), only present in CFTR-1C/-1A transcripts, encodes an AUG codon that is in-frame with the main CFTR open reading frame, the efficient translation of which produces a novel CFTR protein isoform with a curtailed amino terminus. As the expression of this CFTR transcript parallels the spatial and temporal distribution of the cAMP-activated whole-cell current density in normal and diseased hearts, we suggest that CFTR-1C/-1A provides the molecular basis for the cardiac cAMP-activated chloride channel. Our findings provide further insight into the complex nature of in vivo CFTR expression, to which multiple mRNA transcripts, protein isoforms, and post-transcriptional regulatory mechanisms are now added.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Work domain analysis (WDA) has been applied to a range of complex work domains, but few WDAs have been undertaken in medical contexts. One pioneering effort suggested that clinical abstraction is not based on means-ends relations, whereas another effort downplayed the role of bio-regulatory mechanisms. In this paper it is argued that bio-regulatory mechanisms that govern physiological behaviour must be part of WDA models of patients as the systems at the core of intensive care units. Furthermore it is argued that because the inner functioning of patients is not completely known, clinical abstraction is based on hypothetico-deductive abstract reasoning. This paper presents an alternative modelling framework that conforms to the broader aspirations of WDA. A modified version of the viable systems model is used to represent the patient system as a nested dissipative structure while aspects of the recognition primed decision model are used to represent the information resources available to clinicians in ways that support lsquoif...thenrsquo conceptual relations. These two frameworks come together to form the recursive diagnostic framework, which may provide a more appropriate foundation for information display design in the intensive care unit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A number of recent studies have provided new insights into the complexity of the endocytic pathways originating at the plasma membrane of mammalian cells. Many of the molecules involved in clathrin coated pit internalization are now well understood but other pathways are less well defined. Caveolae appear to represent a low capacity but highly regulated pathway in a restricted set of tissues in vivo. A third pathway, which is both clathrin- and caveolae-independent, may constitute a specialized high capacity endocytic pathway for lipids and fluid. The relationship of this pathway, if any, to macropinocytosis or to the endocytic pathways of lower eukaryotes remains an interesting open question. Our understanding of the regulatory mechanisms and molecular components involved in this pathway are at a relatively primitive stage. In this review, we will consider some of the characteristics of different endocytic pathways in high and lower eukaryotes and consider some of the common themes in endocytosis. One theme which becomes apparent from comparison of these pathways is that apparently different pathways can share common molecular machinery and that pathways considered to be distinct actually represent similar basic pathways to which additional levels of regulatory complexity have been added. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the cloning and characterization in tobacco and Arabidopsis of a Vigna radiata L. (mung bean) promoter that controls the expression of VR-ACS1, an auxin-inducible ACC synthase gene. The VR-ACS1 promoter exhibits a very unusual behavior when studied in plants different from its original host, mung bean. GUS and luciferase in situ assays of transgenic plants containing VR-ACS1 promoter fusions show strong constitutive reporter gene expression throughout tobacco and Arabidopsis development. In vitro quantitative analyses show that transgenic plants harboring VR-ACS1 promoter-reporter constructs have on average 4-6 fold higher protein and activity levels of both reporter genes than plants transformed with comparable CaMV 35S promoter fusions. Similar transcript levels are present in VR-ACS1 and CaMV 35S promoter lines, suggesting that the high levels of gene product observed for the VR-ACS1 promoter are the combined result of transcriptional and translational activation. All tested deletion constructs retaining the core promoter region can drive strong constitutive promoter activity in transgenic plants. This is in contrast to mung bean, where expression of the native VR-ACS1 gene is almost undetectable in plants grown under normal conditions, but is rapidly and highly induced by a variety of stimuli. The constitutive behavior of the VR-ACS1 promoter in heterologous hosts is surprising, suggesting that the control mechanisms active in mung bean are impaired in tobacco and Arabidopsis. The 'aberrant' behavior of the VR-ACS1 promoter is further emphasized by its failure to respond to auxin and cycloheximide in heterologous hosts. VR-ACS1 promoter regulatory mechanisms seem to be different from all previously characterized auxin-inducible promoters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lipid droplets form the main lipid store in eukaryotic cells. Although all cells seem to be able to generate lipid droplets, their biogenesis, regulatory mechanisms and interactions with other organelles remain largely elusive. In this article, we outline some of the recent developments in lipid droplet cell biology. We show the mobile and dynamic nature of this organelle, and advocate the adoption of a unified nomenclature to consolidate terminology in this emerging field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IL-1 is a key proinflammatory driver of several autoimmune diseases including juvenile inflammatory arthritis, diseases with mutations in the NALP/cryopyrin complex and Crohn’s disease, and is genetically or clinically associated with many others. IL-1 is a pleiotropic proinflammatory cytokine; however the mechanisms by which increased IL-1 signaling promotes autoreactive T cell activity are not clear. Here we show that autoimmune-prone NOD and IL-1 receptor antagonist-deficient C57BL/6 mice both produce high levels of IL-1, which drives autoreactive effector cell expansion. IL-1beta drives proliferation and cytokine production by CD4+CD25+FoxP3– effector/memory T cells, attenuates CD4+CD25+FoxP3+ regulatory T cell function, and allows escape of CD4+CD25– autoreactive effectors from suppression. Thus, inflammation or constitutive overexpression of IL-1beta in a genetically predisposed host can promote autoreactive effector T cell expansion and function, which attenuates the ability of regulatory T cells to maintain tolerance to self.