3 resultados para real algbraic curve

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Use of PCR in the field of molecular diagnostics has increased to the point where it is now accepted as the standard method for detecting nucleic acids from a number of sample and microbial types. However, conventional PCR was already an essential tool in the research laboratory. Real-time PCR has catalysed wider acceptance of PCR because it is more rapid, sensitive and reproducible, while the risk of carryover contamination is minimised. There is an increasing number of chemistries which are used to detect PCR products as they accumulate within a closed reaction vessel during real-time PCR. These include the non-specific DNA-binding fluorophores and the specific, fluorophore-labelled oligonucleotide probes, some of which will be discussed in detail. It is not only the technology that has changed with the introduction of real-time PCR. Accompanying changes have occurred in the traditional terminology of PCR, and these changes will be highlighted as they occur. Factors that have restricted the development of multiplex real-time PCR, as well as the role of real-time PCR in the quantitation and genotyping of the microbial causes of infectious disease, will also be discussed. Because the amplification hardware and the fluorogenic detection chemistries have evolved rapidly, this review aims to update the scientist on the current state of the art. Additionally, the advantages, limitations and general background of real-time PCR technology will be reviewed in the context of the microbiology laboratory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: To rapidly quantify hepatitis B virus (HBV) DNA by real-time PCR using efficient TaqMan probe and extraction methods of virus DNA. Methods: Three standards were prepared by cloning PCR products which targeted S, C and X region of HBV genome into pGEM-T vector respectively. A pair of primers and matched TaqMan probe were selected by comparing the copy number and the Ct values of HBV serum samples derived from the three different standard curves using certain serum DNA. Then the efficiency of six HBV DNA extraction methods including guanidinium isothiocyanate, proteinase K, NaI, NaOH lysis, alkaline lysis and simple boiling was analyzed in sample A, B and C by real-time PCR. Meanwhile, 8 clinical HBV serum samples were quantified. Results: The copy number of the same HBV serum sample originated from the standard curve of S, C and X regions was 5.7 × 104/ mL, 6.3 × 102/mL and 1.6 × 103/mL respectively. The relative Ct value was 26.6, 31.8 and 29.5 respectively. Therefore, primers and matched probe from S region were chosen for further optimization of six extraction methods. The copy number of HBV serum samples A, B and C was 3.49 × 109/mL, 2.08 × 106/mL and 4.40 × 107/mL respectively, the relative Ct value was 19.9, 30 and 26.2 in the method of NaOH lysis, which was the efficientest among six methods. Simple boiling showed a slightly lower efficiency than NaOH lysis. Guanidinium isothiocyanate, proteinase K and NaI displayed that the copy number of HBV serum sample A, B and C was around 105/ mL, meanwhile the Ct value was about 30. Alkaline failed to quantify the copy number of three HBV serum samples, Standard deviation (SD) and coefficient variation (CV) were very low in all 8 clinical HBV serum samples, showing that quantification of HBV DNA in triplicate was reliable and accurate. Conclusion: Real-time PCR based on optimized primers and TaqMan probe from S region in combination with NaOH lysis is a simple, rapid and accurate method for quantification of HBV serum DNA. © 2006 The WJG Press. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent emergence of a decreased susceptibility of Neisseria gonorrhoeae strains to penicillin in New Caledonia has lead clinicians to operate a change in the treatment strategy. In addition, this important health issue has emphasized the need for a rapid means of detecting penicillin resistance in N. gonorrhoeae in order to select an effective treatment and limit the spread of resistant strains. In recent years, the use of fluorescence resonance energy transfer on the LightCycler has proven to be a valuable tool for the screening of mutations occurring in the genome of various microorganisms. In this study, we developed a real-time PCR assay coupled with a fluorometric hybridization probes system to detect a penicillin resistance-associated mutation on the N. gonorrhoeae ponA gene. Following an extensive evaluation involving 136 isolates, melting curve analysis correctly evidenced a 5 degrees C T-m shift in all N. gonorrhoeae strains possessing this mutation, as determined by conventional sequencing analysis. Moreover, the mutation profiles obtained with the real-time PCR showed good correlation with the pattern of penicillin susceptibility generated with classical antibiograms. Overall, our molecular assay allowed an accurate and reproducible determination of the susceptibility to penicillin corresponding to a mutation present in all chromosomally mediated resistant strains of N. gonorrhoeae.