219 resultados para rate function
em University of Queensland eSpace - Australia
Resumo:
A large number of models have been derived from the two-parameter Weibull distribution and are referred to as Weibull models. They exhibit a wide range of shapes for the density and hazard functions, which makes them suitable for modelling complex failure data sets. The WPP and IWPP plot allows one to determine in a systematic manner if one or more of these models are suitable for modelling a given data set. This paper deals with this topic.
Resumo:
In this paper we study the n-fold multiplicative model involving Weibull distributions and examine some properties of the model. These include the shapes for the density and failure rate functions and the WPP plot. These allow one to decide if a given data set can be adequately modelled by the model. We also discuss the estimation of model parameters based on the WPP plot. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Survival and development time from egg to adult emergence of the diamondback moth, Plutella xylostella (L.), were determined at 19 constant and 14 alternating temperature regimes from 4 to 40degreesC. Plutella xylostella developed successfully front egg to adult emergence at constant temperatures from 8 to 32degreesC. At temperatures from 4 to 6degreesC or from 34 to 40degreesC, partial or complete development of individual stages or instars was possible, with third and fourth instars having the widest temperature limits. The insect developed successfully from egg to adult emergence under alternating regimes including temperatures as low as 4degreesC or as high as 38degreesC. The degree-day model, the logistic equation, and the Wang model were used to describe the relationships between temperature and development rate at both constant and alternating temperatures. The degree-day model described the relationships well from 10 to 30degreesC. The logistic equation and the Wang model fit the data well at temperatures 32degreesC. Under alternating regimes, all three models gave good simulations of development in the mid-temperature range, but only the logistic equation gave close simulations in the low temperature range, and none gave close or consistent simulations in the high temperature range. The distribution of development time was described satisfactorily by a Weibull function. These rate and time distribution functions provide tools for simulating population development of P. xylostella over a wide range of temperature conditions.
Resumo:
A new lifetime distribution capable of modeling a bathtub-shaped hazard-rate function is proposed. The proposed model is derived as a limiting case of the Beta Integrated Model and has both the Weibull distribution and Type I extreme value distribution as special cases. The model can be considered as another useful 3-parameter generalization of the Weibull distribution. An advantage of the model is that the model parameters can be estimated easily based on a Weibull probability paper (WPP) plot that serves as a tool for model identification. Model characterization based on the WPP plot is studied. A numerical example is provided and comparison with another Weibull extension, the exponentiated Weibull, is also discussed. The proposed model compares well with other competing models to fit data that exhibits a bathtub-shaped hazard-rate function.
Resumo:
This paper deals with an n-fold Weibull competing risk model. A characterisation of the WPP plot is given along with estimation of model parameters when modelling a given data set. These are illustrated through two examples. A study of the different possible shapes for the density and failure rate functions is also presented. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The development of a new process model of cement grinding in two-stage mills is discussed. The new model has been used to simulate cement grinding and predicting mill performance in open and closed circuit configuration. The new model considered the two-compartment mill as perfectly mixed slices in series. The breakage rate function uses the back calculation technique to determine offline using drop weight and abrasion tests.
Resumo:
The growth dynamics of green sea turtles resident in four separate foraging grounds of the southern Great Barrier Reef genetic stock were assessed using a nonparametric regression modeling approach. Juveniles recruit to these grounds at the same size, but grow at foraging-ground-dependent rates that result in significant differences in expected size- or age-at-maturity. Mean age-at-maturity was estimated to vary from 25-50 years depending on the ground. This stock comprises mainly the same mtDNA haplotype, so geographic variability might be due to local environmental conditions rather than genetic factors, although the variability was not a function of latitudinal variation in environmental conditions or whether the food stock was seagrass or algae. Temporal variability in growth rates was evident in response to local environmental stochasticity, so geographic variability might be due to local food stock dynamics. Despite such variability, the expected size-specific growth rate function at all grounds displayed a similar nonmonotonic growth pattern with a juvenile growth spurt at 60-70 cm curved carapace length, (CCL) or 15-20 years of age. Sex-specific growth differences were also evident with females tending to grow faster than similar-sized males after the Juvenile growth spurt. It is clear that slow sex-specific growth displaying both spatial and temporal variability and a juvenile growth spurt are distinct growth behaviors of green turtles from this stock.
Resumo:
The olive ridley is the most abundant seaturtle species in the world but little is known of the demography of this species. We used skeletochronological data on humerus diameter growth changes to estimate the age of North Pacific olive ridley seaturtles caught incidentally by pelagic longline fisheries operating near Hawaii and from dead turtles washed ashore on the main Hawaiian Islands. Two age estimation methods [ranking, correction factor (CF)] were used and yielded age estimates ranging from 5 to 38 and 7 to 24 years, respectively. Rank age-estimates are highly correlated (r = 0.93) with straight carapace length (SCL), CF age estimates are not (r = 0.62). We consider the CF age-estimates as biologically more plausible because of the disassociation of age and size. Using the CF age-estimates, we then estimate the median age at sexual maturity to be around 13 years old (mean carapace size c. 60 cm SCL) and found that somatic growth was negligible by 15 years of age. The expected age-specific growth rate function derived using numerical differentiation suggests at least one juvenile growth spurt at about 10–12 years of age when maximum age-specific growth rates, c. 5 cm SCL year−1, are apparent.