5 resultados para radiofrequency ablation
em University of Queensland eSpace - Australia
Resumo:
Objectives: To systematically review radiofrequency ablation (RFA) for treating liver tumors. Data Sources: Databases were searched in July 2003. Study Selection: Studies comparing RFA with other therapies for hepatocellular carcinoma (HCC) and colorectal liver metastases (CLM) plus selected case series for CLM. Data Extraction: One researcher used standardized data extraction tables developed before the study, and these were checked by a second researcher. Data Synthesis: For HCC, 1.3 comparative studies were included, 4 of which were randomized, controlled trials. For CLM, 13 studies were included, 2 of which were nonrandomized comparative studies and 11 that were case series. There did not seem to be any distinct differences in the complication rates between RFA and any of the other procedures for treatment of HCC. The local recurrence rate at 2 years showed a statistically significant benefit for RFA over percutaneous ethanol injection for treatment of HCC (6% vs 26%, 1 randomized, controlled trial). Local recurrence was reported to be more common after RFA than after laser-induced thermotherapy, and a higher recurrence rate and a shorter time to recurrence were dassociated with RFA compared with surgical resection (1 nonrandomized study each). For CLM, the postoperative complication rate ranged from 0% to 33% (3 case series). Survival after diagnosis was shorter in the CLM group treated with RFA than in the surgical resection group (1 nonrandomized study). The CLM local recurrence rate after RFA ranged from 4% to 55% (6 case series). Conclusions: Radiofrequency ablation may be more effective than other treatments in terms of less recurrence of HCC and may be as sale, although the evidence is scant. There was not enough evidence to determine the safety or efficacy of RFA for treatment of CLM.
Resumo:
In this paper, numerical simulations are used in an attempt to find optimal Source profiles for high frequency radiofrequency (RF) volume coils. Biologically loaded, shielded/unshielded circular and elliptical birdcage coils operating at 170 MHz, 300 MHz and 470 MHz are modelled using the FDTD method for both 2D and 3D cases. Taking advantage of the fact that some aspects of the electromagnetic system are linear, two approaches have been proposed for the determination of the drives for individual elements in the RF resonator. The first method is an iterative optimization technique with a kernel for the evaluation of RF fields inside an imaging plane of a human head model using pre-characterized sensitivity profiles of the individual rungs of a resonator; the second method is a regularization-based technique. In the second approach, a sensitivity matrix is explicitly constructed and a regularization procedure is employed to solve the ill-posed problem. Test simulations show that both methods can improve the B-1-field homogeneity in both focused and non-focused scenarios. While the regularization-based method is more efficient, the first optimization method is more flexible as it can take into account other issues such as controlling SAR or reshaping the resonator structures. It is hoped that these schemes and their extensions will be useful for the determination of multi-element RF drives in a variety of applications.