14 resultados para quartz monzonite

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polyphase evolution of the Serido Belt (NE-Brazil) includes D, crust formation at 2.3-2.1 Ga, D-2 thrust tectonics at 1.9 Ga and crustal reworking by D-3 strike-slip shear zones at 600 Ma. Microstructural investigations within mylonites associated with D-2 and D-3 events were used to constrain the tectono-thermal evolution of the belt. D-2 shear zones commenced at deeper crustal levels and high amphibolite facies conditions (600-650 degreesC) through grain boundary migration, subgrain rotation and operation of quartz Q-prism slip. Continued shearing and exhumation of the terrain forced the re-equilibration of high-T fabrics and the switching of slip systems from (c)-prism to positive and negative (a)-rhombs. During D-3, enhancement of ductility by dissipation of heat that came from syn-D-3 granites developed wide belts of amphibolite facies mylonites. Continued shearing, uplift and cooling of the region induced D-3 shear zones to act in ductile-brittle regimes, marked by fracturing and development of thinner belts of greenschist facies mylonites. During this event, switching from (a)-prism to a basal slip indicates a thermal path from 600 to 350 degreesC. Therefore, microstructures and quartz c-axis fabrics in polydeformed rocks from the Serido Belt preserve the record of two major events, which includes contrasting deformation mechanisms and thermal paths. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a result of their relative concentration towards the respective Atlantic margins, the silicic eruptives of the Parana (Brazil)-Etendeka large igneous province are disproportionately abundant in the Etendeka of Namibia. The NW Etendeka silicic units, dated at similar to132 Ma, occupy the upper stratigraphic levels of the volcanic sequences, restricted to the coastal zone, and comprise three latites and five quartz latites (QL). The large-volume Fria QL is the only low-Ti type. Its trace element and isotopic signatures indicate massive crustal input. The remaining NW Etendeka silicic units are enigmatic high-Ti types, geochemically different from low-Ti types. They exhibit chemical affinities with the temporally overlapping Khumib high-Ti basalt (see Ewart et al. Part 1) and high crystallization temperatures (greater than or equal to980 to 1120degreesC) inferred from augite and pigeonite phenocrysts, both consistent with their evolution from a mafic source. Geochemically, the high-Ti units define three groups, thought genetically related. We test whether these represent independent liquid lines of descent from a common high-Ti mafic parent. Although the recognition of latites reduces the apparent silica gap, difficulty is encountered in fractional crystallization models by the large volumes of two QL units. Numerical modelling does, however, support large-scale open-system fractional crystallization, assimilation of silicic to basaltic materials, and magma mixing, but cannot entirely exclude partial melting processes within the temporally active extensional environment. The fractional crystallization and mixing signatures add to the complexity of these enigmatic and controversial silicic magmas. The existence, however, of temporally and spatially overlapping high-Ti basalts is, in our view, not coincidental and the high-Ti character of the silicic magmas ultimately reflects a mantle signature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small mesothermal vein quam-gold-base-metal sulfide deposits from which some 20 t of Au-Ag bullion have been extracted, are the most common gold deposits in the Georgetown region of north Queensland-several hundred were mined or prospected between 1870 and 1950. These deposits are mostly hosted by Proterozoic granitic and metamorphic rocks and are similar to the much larger Charters Towers deposits such as Day Dawn and Brilliant, and in some respects to the Motherlode deposits of California. The largest deposit in the region-Kidston (> 138 t of Au and Ag since 1985)- is substantially different. It is hosted by sheeted quartz veins and cavities in brecciated Silurian granite and Proterozoic metamorphics above nested high-level Carboniferous intrusives associated with a nearby cauldron subsidence structure. This paper provides new information (K-Ar and Rb-Sr isotopic ages, preliminary oxygen isotope and fluid-inclusion data) from some of the mesothermal deposits and compares it with the Kidston deposit. All six dated mesothermal deposits have Siluro-Devonian (about 425 to 400 Ma) ages. All nine of such deposits analysed have delta(18)O quartz values in the range 8.4 to 15.7 parts per thousand, Fluid-inclusion data indicate homogenisation temperatures in the range 230-350 degrees C. This information, and a re-interpretation of the spatial relationships of the deposits with various elements of the updated regional geology, is used to develop a preliminary metallogenic model of the mesothermal Etheridge Goldfield. The model indicates how the majority of deposits may have formed from hydrothermal systems initiated during the emplacement of granitic batholiths that were possibly, but not clearly, associated with Early Palaeozoic subduction, and that these fluid systems were dominated by substantially modified meteoric and/or magmatic fluids. The large Kidston deposit and a few small relatives are of Carboniferous age and formed more directly from magmatic systems much closer to the surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two geographically distinct silcrete associations are present in southern Australia, inland and eastern; these were sampled in central South Australia and central Victoria, respectively, At each site, both silicified and immediately adjacent unsilicified parent material were collected. Analytical data from these pairs were used to construct isocons, assuming Zr immobility, and to calculate the volume change and amount of silica introduced during silicification, These results, together with whole-rock oxygen isotope compositions, were used to determine the delta(18)O of th, introduced silica, The results show that the eastern silcretes in central Victoria are probably linked genetically to the associated basalts, weathering of which supplied the introduced silica, This conclusion is based on the close spatial connection between the two, as well as the substantial amount of introduced silica in the silcretes (greater than in the inland silcretes), resulting in volume increases in some eastern silcretes, Oxygen isotopic calculations for the silcretes indicate that the silica precipitated from groundwaters at temperatures slightly higher than present conditions. Silcrete formation apparently occurred during the Miocene and Pliocene (basalts in Victoria younger than Pliocene lack associated silcrete) and may reflect the much wetter climate in southeastern Australia at that time. The inland silcretes of central South Australia can be divided into pedogenic (the most common) and groundwater varieties. The pedogenic silcretes, which show typical soil features like columnar and nodular textures, contain moderate amounts of introduced silica that precipitated by evaporation from saline groundwaters, For the groundwater silcretes, which have massive textures and formed at or close to the water table, insufficient data are available to determine the mode of formation. The inland pedogenic silcretes have probably been farming from the Eocene-Miocene to the present, implying that conditions of seasonally high evaporation have occurred in central Australia during this time period. Thus silcrete formation depends on a complex interplay between climate and silica supply, and it is impossible to generalize that the presence of silcrete is indicative of a particular climate. Likewise, the elemental composition of silcretes, particularly Ti content, is not necessarily of climatic significance, Nevertheless, detailed geochemical and oxygen isotopic studies of a silcrete and its parent material can elucidate the mechanisms of silcrete formation, and if evaporation is indicated as a major factor in silcrete formation, then the climate at the time was likely to have been at least seasonally arid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gold surface of a quartz crystal microbalance was modified by the attachment of silica particles derivatised with N-[(3-trimethoxysilyl)propyl] ethylenediaminetriacetic acid. The device was employed to study the kinetics of the interaction of aqueous solutions of lead(II) nitrate and silver(I) nitrate with the surface and for the selective separation of the metal ions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrothermal alteration of a quartz-K-feldspar rock is simulated numerically by coupling fluid flow and chemical reactions. Introduction of CO2 gas generates an acidic fluid and produces secondary quartz, muscovite and/or pyrophyllite at constant temperature and pressure of 300 degrees C and 200 MPa. The precipitation and/or dissolution of the secondary minerals is controlled by either mass-action relations or rate laws. In our simulations the mass of the primary elements are conserved and the mass-balance equations are solved sequentially using an implicit scheme in a finite-element code. The pore-fluid velocity is assumed to be constant. The change of rock volume due to the dissolution or precipitation of the minerals, which is directly related to their molar volume, is taken into account. Feedback into the rock porosity and the reaction rates is included in the model. The model produces zones of pyrophyllite quartz and muscovite due to the dissolution of K-feldspar. Our model simulates, in a simplified way, the acid-induced alteration assemblages observed in various guises in many significant mineral deposits. The particular aluminosilicate minerals produced in these experiments are associated with the gold deposits of the Witwatersrand Basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediment mobility measurements with a horizontal sand bed under non-breaking waves are reported. Conditions include no seepage and steady downward seepage corresponding to head gradients up to 2.5. The results indicate that infiltration tends to inhibit sediment mobility for a horizontal bcd of 0.2 mm quartz sand exposed to moderated wave induced bed shear stresses. The effect is weak for the parameter range of the present study. The two opposing effects of shear stress increase due to boundary layer thinning and the stabilizing downward drag are successfully accounted for through the modified Shields parameter of Nielsen [Nielsen, P., 1997. Coastal groundwater dynamics. Proc. Coastal Dynamics '97, Plymouth, ASCE, Dp, 546-555] using coefficients derived from independent studies. That is, from the shear stress experiments of Conley [Conley, D.C., 1993. Ventilated oscillatory boundary layers. PhD Thesis, University of California, San Diego, 74 pp.] and the slope stability experiments of Martin and Aral [Martin, C.S. and M.M. Aral, 1971. Seepage force on interfacial bed particles. J. Hydraulics Div., proc. ASCE, Vol. 97, No. Hy7, pp. 1081-1100]. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A quartz crystal microbalance modified by the attachment of silica particles derivatized with the aminopolycarboxylate ligand N-[(3-trimethoxysilyl)propyl]ethylenediamine-N,N',N'-triacetic acid has been employed to assess conditions under which mercury (II), lead (II), and silver (I) nitrates may be separated in aqueous solution. The separation protocol, which involved removal of Hg(II), as [HgI4](2-), and Pb(II) with H+ was successfully applied to a batchwise separation of the 3 metal ions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantitative laser ablation (LA)-ICP-MS analyses of fluid inclusions, trace element chemistry of sulfides, stable isotope (S), and Pb isotopes have been used to discriminate the formation of two contrasting mineralization styles and to evaluate the origin of the Cu and Au at Mt Morgan. The Mt Morgan Au-Cu deposit is hosted by Devonian felsic volcanic rocks that have been intruded by multiple phases of the Mt Morgan Tonalite, a low-K, low-Al2O3 tonalite-trondhjemite-dacite (TTD) complex. An early, barren massive sulfide mineralization with stringer veins is conforming to VHMS sub-seafloor replacement processes, whereas the high-grade Au-Cu. ore is associated with a later quartz-chalcopyrite-pyrite stock work mineralization that is related to intrusive phases of the Tonalite complex. LA-ICP-MS fluid inclusion analyses reveal high As (avg. 8850 ppm) and Sb (avg. 140 ppm) for the Au-Cu mineralization and 5 to 10 times higher Cu concentration than in the fluids associated with the massive pyrite mineralization. Overall, the hydrothermal system of Mt Morgan is characterized by low average fluid salinities in both mineralization styles (45-80% seawater salinity) and temperatures of 210 to 270 degreesC estimated from fluid inclusions. Laser Raman Spectroscopic analysis indicates a consistent and uniform array Of CO2-bearing fluids. Comparison with active submarine hydrothermal vents shows an enrichment of the Mt Morgan fluids in base metals. Therefore, a seawater-dominated fluid is assumed for the barren massive sulfide mineralization, whereas magmatic volatile contributions are implied for the intrusive related mineralization. Condensation of magmatic vapor into a seawater-dominated environment explains the CO2 occurrence, the low salinities, and the enriched base and precious metal fluid composition that is associated with the Au-Cu. mineralization. The sulfur isotope signature of pyrite and chalcopyrite is composed of fractionated Devonian seawater and oxidized magmatic fluids or remobilized sulfur from existing sulfides. Pb isotopes indicate that Au and Cu. originated from the Mt Morgan intrusions and a particular volcanic strata that shows elevated Cu background. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mid-crustal Alpine Schist in central Southern Alps, New Zealand has been exhumed during the past similar to3 m.y. on the hanging wall of the oblique-slip Alpine Fault. These rocks underwent ductile deformation during their passage through the similar to 150-km-wide Pacific-Australia plate boundary zone. Likely to be Cretaceous in age, peak metamorphism predates the largely Pliocene and younger oblique convergence that continues to uplift the Southern Alps today. Late Cenozoic ductile deformation constructively reinforced a pre-existing fabric that was well oriented to accommodate a dextral-transpressive overprint. Quartz microstructures below a recently exhumed brittle-ductile transition zone reflect a late Cenozoic increment of ductile strain that was distributed across deeper levels of the Pacific Plate. Deformation was transpressive, including a dextral-normal shear component that bends and rotates a delaminated panel of Pacific Plate crust onto the oblique footwall ramp of the Alpine Fault. Progressive ductile shear in mylonites at the base of the Pacific Plate overprints earlier fabrics in a dextral-reverse sense, a deformation that accompanies translation of the schists up the Alpine Fault. Ductile shear along that structure affects not only the 12-km-thick section of Alpine mylonites, but is distributed across several kilometres of overlying nonmylonitic rocks. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Upper Devonian to Lower Carboniferous strata of the Campwyn Volcanics of east central Queensland preserve a substantial sequence of first-cycle volcaniclastic sedimentary and coeval volcanic rocks that record prolonged volcanic activity along the northern New England Fold Belt. The style and scale of volcanism varied with time, producing an Upper Devonian sequence of mafic volcano-sedimentary rocks overlain by a rhyolitic ignimbrite-dominated sequence that passes upward into a Lower Carboniferous limestone-bearing sedimentary sequence. We define two facies associations for the Campwyn Volcanics. A lower facies association is dominated by mafic volcanic-derived sedimentary breccias with subordinate primary mafic volcanic rocks comprising predominantly hyaloclastite and peperite. Sedimentary breccias record episodic and high energy, subaqueous depositional events with clastic material sourced from a mafic lava-dominated terrain. Some breccias contain a high proportion of attenuated dense, glassy mafic juvenile clasts, suggesting a syn-eruptive origin. The lower facies association coarsens upwards from a lithic sand-dominated sequence through a thick interval of pebble- to boulder-grade polymict volcaniclastic breccias, culminating in facies that demonstrate subaerial exposure. The silicic upper facies association marks a significant change in eruptive style, magma composition and the nature of eruptive sources, as well as the widespread development of subaerial depositional conditions. Crystal-rich, high-grade, low- to high-silica rhyolite ignimbrites dominate the base of this facies association. Biostratigraphic age controls indicate that the ignimbrite-bearing sequences are Famennian to lower-mid Tournaisian in age. The ignimbrites represent extra-caldera facies with individual units up to 40 m thick and mostly lacking coarse lithic breccias. Thick deposits of pyroclastic material interbedded with fine-grained siliceous sandstone and mudstone (locally radiolarian-bearing) were deposited from pyroclastic flows that crossed palaeoshorelines or represent syn-eruptive, resedimented pyroclastic material. Some block-bearing lithic-pumice-crystal breccias may also reflect more proximal subaqueous silicic explosive eruptions. Crystal-lithic sandstones interbedded with, and overlying the ignimbrites, contain abundant detrital volcanic quartz and feldspar derived from the pyroclastic deposits. Limestone is common in the upper part of the upper facies association, and several beds are oolitic (cf. Rockhampton Group of the Yarrol terrane). Overall, the upper facies association fines upward and is transgressive, recording a return to shallow-marine conditions. Palaeocurrent data from all stratigraphic levels in the Campwyn Volcanics indicate that the regional sediment-dispersal direction was to the northwest, and opposed to the generally accepted notion of easterly sediment dispersal from a volcanic arc source. The silicic upper facies association correlates in age and lithology to Early Carboniferous silicic volcanism in the Drummond (Cycle 1) and Burdekin Basins, Connors Arch, and in the Yarrol terranes of eastern Queensland. The widespread development of silicic volcanism in the Early Carboniferous indicates that silicic (rift-related) magmatism was not restricted to the Drummond Basin, but was part of a more substantial silicic igneous province.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of near-bed sorting processes on heavy mineral content in suspension is discussed. Sediment concentrations above a rippled bed of mixed quartz and heavy mineral sand were measured under regular nonbreaking waves in the laboratory. Using the traditional gradient diffusion process, settling velocity would be expected to strongly affect sediment distribution. This was not observed during present trials. In fact, the vertical gradients of time-averaged suspension concentrations were found to be similar for the light and heavy minerals, despite their different settling velocities. This behavior implies a convective rather than diffusive distribution mechanism. Between the nonmoving bed and the lowest suspension sampling point, fight and heavy mineral concentration differs by two orders of magnitude. This discrimination against the heavy minerals in the pickup process is due largely to selective entrainment at the ripple face. Bed-form dynamics and the nature of quartz suspension profiles are found to be little affected by the trialed proportion of overall heavy minerals in the bed (3.8-22.1%).