276 resultados para quantum dynamics
em University of Queensland eSpace - Australia
Resumo:
The calculation of quantum dynamics is currently a central issue in theoretical physics, with diverse applications ranging from ultracold atomic Bose-Einstein condensates to condensed matter, biology, and even astrophysics. Here we demonstrate a conceptually simple method of determining the regime of validity of stochastic simulations of unitary quantum dynamics by employing a time-reversal test. We apply this test to a simulation of the evolution of a quantum anharmonic oscillator with up to 6.022×1023 (Avogadro's number) of particles. This system is realizable as a Bose-Einstein condensate in an optical lattice, for which the time-reversal procedure could be implemented experimentally.
Resumo:
The simplest model of three coupled Bose-Einstein condensates is investigated using a group theoretical method. The stationary solutions are determined using the SU(3) group under the mean-field approximation. This semiclassical analysis, using system symmetries, shows a transition in the dynamics of the system from self trapping to delocalization at a critical value for the coupling between the condensates. The global dynamics are investigated by examination of the stable points, and our analysis shows that the structure of the stable points depends on the ratio of the condensate coupling to the particle-particle interaction, and undergoes bifurcations as this ratio is varied. This semiclassical model is compared to a full quantum treatment, which also displays a dynamical transition. The quantum case has collapse and revival sequences superimposed on the semiclassical dynamics, reflecting the underlying discreteness of the spectrum. Nonzero circular current states are also demonstrated as one of the higher-dimensional effects displayed in this system.
Resumo:
We consider the quantum dynamics of a neutral atom Bose-Einstein condensate in a double-well potential, including many-body hard-sphere interactions. Using a mean-field factorization we show that the coherent oscillations due to tunneling are suppressed when the number of atoms exceeds a critical value. An exact quantum solution, in a two-mode approximation, shows that the mean-field solution is modulated by a quantum collapse and revival sequence.
Resumo:
Quantum dynamics simulations can be improved using novel quasiprobability distributions based on non-orthogonal Hermitian kernel operators. This introduces arbitrary functions (gauges) into the stochastic equations. which can be used to tailor them for improved calculations. A possible application to full quantum dynamic simulations of BEC's is presented. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We study the quantum dynamics of the emission of multimodal polarized light in light emitting devices (LED) due to spin polarized carriers injection. We present the equations for photon number and carrier numbers, and calculate the polarisation degree of the light generated by LED. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We investigate the difference between classical and quantum dynamics of coupled magnetic dipoles. We prove that in general the dynamics of the classical interaction Hamiltonian differs from the corresponding quantum model, regardless of the initial state. The difference appears as nonpositive-definite diffusion terms in the quantum evolution equation of an appropriate positive phase-space probability density. Thus, it is not possible to express the dynamics in terms of a convolution of a positive transition probability function and the initial condition as can be done in the classical case. It is this feature that enables the quantum system to evolve to an entangled state. We conclude that the dynamics are a quantum element of nuclear magnetic resonance quantum-information processing. There are two limits where our quantum evolution coincides with the classical one: the short-time limit before spin-spin interaction sets in and the long-time limit when phase diffusion is incorporated.
Resumo:
How useful is a quantum dynamical operation for quantum information processing? Motivated by this question, we investigate several strength measures quantifying the resources intrinsic to a quantum operation. We develop a general theory of such strength measures, based on axiomatic considerations independent of state-based resources. The power of this theory is demonstrated with applications to quantum communication complexity, quantum computational complexity, and entanglement generation by unitary operations.
Resumo:
The general idea of a stochastic gauge representation is introduced and compared with more traditional phase-space expansions, like the Wigner expansion. Stochastic gauges can be used to obtain an infinite class of positive-definite stochastic time-evolution equations, equivalent to master equations, for many systems including quantum time evolution. The method is illustrated with a variety of simple examples ranging from astrophysical molecular hydrogen production, through to the topical problem of Bose-Einstein condensation in an optical trap and the resulting quantum dynamics.
Resumo:
0We study the exact solution for a two-mode model describing coherent coupling between atomic and molecular Bose-Einstein condensates (BEC), in the context of the Bethe ansatz. By combining an asymptotic and numerical analysis, we identify the scaling behaviour of the model and determine the zero temperature expectation value for the coherence and average atomic occupation. The threshold coupling for production of the molecular BEC is identified as the point at which the energy gap is minimum. Our numerical results indicate a parity effect for the energy gap between ground and first excited state depending on whether the total atomic number is odd or even. The numerical calculations for the quantum dynamics reveals a smooth transition from the atomic to the molecular BEC.
Resumo:
In this work, we investigate the quantum dynamics of a model for two singlemode Bose-Einstein condensates which are coupled via Josephson tunnelling. Using direct numerical diagonalization of the Hamiltonian, we compute the time evolution of the expectation value for the relative particle number across a wide range of couplings. Our analysis shows that the system exhibits rich and complex behaviours varying between harmonic and non-harmonic oscillations, particularly around the threshold coupling between the delocalized and selftrapping phases. We show that these behaviours are dependent on both the initial state of the system and regime of the coupling. In addition, a study of the dynamics for the variance of the relative particle number expectation and the entanglement for different initial states is presented in detail.
Resumo:
We present experimental results on the measurement of fidelity decay under contrasting system dynamics using a nuclear magnetic resonance quantum information processor. The measurements were performed by implementing a scalable circuit in the model of deterministic quantum computation with only one quantum bit. The results show measurable differences between regular and complex behavior and for complex dynamics are faithful to the expected theoretical decay rate. Moreover, we illustrate how the experimental method can be seen as an efficient way for either extracting coarse-grained information about the dynamics of a large system or measuring the decoherence rate from engineered environments.
Resumo:
We study a model for a two-mode atomic-molecular Bose-Einstein condensate. Starting with a classical analysis we determine the phase space fixed points of the system. It is found that bifurcations of the fixed points naturally separate the coupling parameter space into four regions. The different regions give rise to qualitatively different dynamics. We then show that this classification holds true for the quantum dynamics.
Resumo:
First principles simulations of the quantum dynamics of interacting Bose gases using the stochastic gauge representation are analysed. In a companion paper, we showed how the positive-P representation can be applied to these problems using stochastic differential equations. That method, however, is limited by increased sampling error as time evolves. Here, we show how the sampling error can be greatly reduced and the simulation time significantly extended using stochastic gauges. In particular, local stochastic gauges (a subset) are investigated. Improvements are confirmed in numerical calculations of single-, double- and multi-mode systems in the weak-mode coupling regime. Convergence issues are investigated, including the recognition of two modes by which stochastic equations produced by phase-space methods in general can diverge: movable singularities and a noise-weight relationship. The example calculated here displays wave-like behaviour in spatial correlation functions propagating in a uniform 1D gas after a sudden change in the coupling constant. This could in principle be tested experimentally using Feshbach resonance methods.
Resumo:
The performance of the positive P phase-space representation for exact many- body quantum dynamics is investigated. Gases of interacting bosons are considered, where the full quantum equations to simulate are of a Gross-Pitaevskii form with added Gaussian noise. This method gives tractable simulations of many-body systems because the number of variables scales linearly with the spatial lattice size. An expression for the useful simulation time is obtained, and checked in numerical simulations. The dynamics of first-, second- and third-order spatial correlations are calculated for a uniform interacting 1D Bose gas subjected to a change in scattering length. Propagation of correlations is seen. A comparison is made with other recent methods. The positive P method is particularly well suited to open systems as no conservation laws are hard-wired into the calculation. It also differs from most other recent approaches in that there is no truncation of any kind.
Resumo:
We report new experiments that test quantum dynamical predictions of polarization squeezing for ultrashort photonic pulses in a birefringent fiber, including all relevant dissipative effects. This exponentially complex many-body problem is solved by means of a stochastic phase-space method. The squeezing is calculated and compared to experimental data, resulting in excellent quantitative agreement. From the simulations, we identify the physical limits to quantum noise reduction in optical fibers. The research represents a significant experimental test of first-principles time-domain quantum dynamics in a one-dimensional interacting Bose gas coupled to dissipative reservoirs.