78 resultados para quad meshing, hex meshing, medial axis, paving, plastering, cross fields, frame fields

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Constructing a veridical spatial map by touch poses at least two problems for a perceptual system. First, as the hand is moved through space, the locations of features may be displaced if there is an uncorrected lag between the moment the hand encounters a feature and the time that feature is encoded on a spatial map. Second, due to the sequential nature of the process, some form of memory, which itself may be subject to spatial distortions, is required for integration of spatial samples. We investigated these issues using a task involving active haptic exploration with a stylus swept back and forth in the horizontal plane at the wrist. Remembered locations of tactile targets were shifted towards the medial axis of the forearm, suggesting a central tendency in haptic spatial memory, while evidence for a displacement of perceived locations in the direction of sweep motion was consistent with processing delays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We developed an anatomical mapping technique to detect hippocampal and ventricular changes in Alzheimer disease (AD). The resulting maps are sensitive to longitudinal changes in brain structure as the disease progresses. An anatomical surface modeling approach was combined with surface-based statistics to visualize the region and rate of atrophy in serial MRI scans and isolate where these changes link with cognitive decline. Fifty-two high-resolution MRI scans were acquired from 12 AD patients (age: 68.4 +/- 1.9 years) and 14 matched controls (age: 71.4 +/- 0.9 years), each scanned twice (2.1 +/- 0.4 years apart). 3D parametric mesh models of the hippocampus and temporal horns were created in sequential scans and averaged across subjects to identify systematic patterns of atrophy. As an index of radial atrophy, 3D distance fields were generated relating each anatomical surface point to a medial curve threading down the medial axis of each structure. Hippocampal atrophic rates and ventricular expansion were assessed statistically using surface-based permutation testing and were faster in AD than in controls. Using color-coded maps and video sequences, these changes were visualized as they progressed anatomically over time. Additional maps localized regions where atrophic changes linked with cognitive decline. Temporal horn expansion maps were more sensitive to AD progression than maps of hippocampal atrophy, but both maps correlated with clinical deterioration. These quantitative, dynamic visualizations of hippocampal atrophy and ventricular expansion rates in aging and AD may provide a promising measure to track AD progression in drug trials. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Previous studies have shown that the medial prefrontal cortex can suppress the hypothalamic-pituitary-adrenal axis response to stress. However, this effect appears to vary with the type of stressor. Furthermore, the absence of direct projections between the medial prefrontal cortex and corticotropin-releasing factor cells at the apex of the hypothalamic-pituitary-adrenal axis suggest that other brain regions must act as a relay when this inhibitory mechanism is activated. In the present study, we first established that electrolytic lesions involving the prelimbic and infralimbic medial prefrontal cortex increased plasma adrenocorticotropic hormone levels seen in response to a physical stressor, the systemic delivery of interleukin-1beta. However, medial prefrontal cortex lesions did not alter plasma adrenocorticotropic hormone levels seen in response to a psychological stressor, noise. To identify brain regions that might mediate the effect of medial prefrontal cortex lesions on hypothalamic-pituitary-adrenal axis responses to systemic interleukin-1beta, we next mapped the effects of similar lesions on interleukin-1beta-induced Fos expression in regions previously shown to regulate the hypothalamic-pituitary-adrenal axis response to this stressor. It was found that medial prefrontal cortex lesions reduced the number of Fos-positive cells in the ventral aspect of the bed nucleus of the stria terminalis. However, the final experiment, which involved combining retrograde tracing with Fos immunolabelling, revealed that bed nucleus of the stria terminalis-projecting medial prefrontal cortex neurons were largely separate from medial prefrontal cortex neurons recruited by systemic interleukin-1beta, an outcome that is difficult to reconcile with a simple medial prefrontal cortex-bed nucleus of the stria terminalis-corticotropin-releasing factor cell control circuit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent investigations have implicated the medial prefrontal cortex (mPFC) in modulation of subcortical pathways that contribute to the generation of behavioural, autonomic and endocrine responses to stress. However, little is known of the mechanisms involved. One of the key neurotransmitters involved in mPFC function is dopamine, and we therefore aimed, in this investigation, to examine the role of mPFC dopamine in response to stress in Wistar rats. In this regard, we infused dopamine antagonists SCH23390 or sulpiride into the mPFC via retrodialysis. We then examined changes in numbers of cells expressing the c-fos immediate-early gene protein product, Fos, in subcortical neuronal populations associated with regulation of hypothalamic-pituitary-adrenal (HPA) axis stress responses in response to either of two stressors; systemic injection of interleukin-1beta, or air puff. The D-1 antagonist, SCH23390, and the D-2 antagonist, sulpiride, both attenuated expression of Fos in the medial parvocellular hypothalamic paraventricular nucleus (mpPVN) corticotropin-releasing factor cells at the apex of the HPA axis, as well as in most extra-hypothalamic brain regions examined in response to interleukin-1beta. By contrast, SCH23390 failed to affect Fos expression in response to air puff in any brain region examined, while sulpiride resulted in an attenuation of the air puff-induced response in only the mpPVN and the bed nucleus of the stria terminalis. These results indicate that the mPFC differentially processes the response to different stressors and that the two types of dopamine receptor may have different roles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Medial parvocellular paraventricular corticotropin-releasing hormone (mPVN CRH) cells are critical in generating hypothalamic-pituitary-adrenal (HPA) axis responses to systemic interleukin-1 beta (IL-1 beta). However, although it is understood that catecholamine inputs are important in initiating mPVN CRH cell responses to IL-1 beta, the contributions of distinct brainstem catecholamine cell groups are not known. We examined the role of nucleus tractus solitarius (NTS) and ventrolateral medulla (VLM) catecholamine cells in the activation of mPVN CRH, hypothalamic oxytocin (OT) and central amygdala cells in response to IL-1 beta (1 mug/kg, i.a.). Immunolabelling for the expression of c-fos was used as a marker of neuronal activation in combination with appropriate cytoplasmic phenotypic markers. First we confirmed that PVN 6-hydroxydopamine lesions, which selectively depleted catecholaminergic terminals, significantly reduced IL-1 beta -induced mPVN CRH cell activation. The contribution of VLM (A1/C1 cells) versus NTS (A2 cells) catecholamine cells to mPVN CRH cell responses was then examined by placing ibotenic acid lesions in either the VLM or NTS. The precise positioning of these lesions was guided by prior retrograde tracing studies in which we mapped the location of IL-1 beta -activated VLM and NTS cells that project to the mPVN. Both VLM and NTS lesions reduced the mPVN CRH and OT cell responses to IL-1 beta. Unlike VLM lesions, NTS lesions also suppressed the recruitment of central amygdala neurons. These studies provide novel evidence that both the NTS and VLM catecholamine cells have important, but differential, contributions to the generation of IL-1 beta -induced HPA axis responses. Copyright (C) 2001 S. Karger AG, Basel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The medial prefrontal cortex (mPFC) has been strongly implicated in control of the paraventricular nucleus of the hypothalamus (PVN) response to stress. Because of the paucity of direct projections from the mPFC to the PVN, we sought to investigate possible brain regions that might act as a relay between the two during psychological stress. Bilateral ibotenic acid lesions of the rat mPFC enhanced the number of Fos-immunoreactive cells seen in the PVN after exposure to the psychological stressor, air puff. Altered neuronal recruitment was seen in only one of the candidate relay populations examined, the ventral bed nucleus of the stria terminalis (vBNST). Furthermore, bilateral ibotenic acid lesions of the BNST caused a significant attenuation of the PVN response to air puff. To better characterize the structural relationships between the mPFC and PVN, retrograde tracing studies were conducted examining Fos expression in cells retrogradely labeled with cholera toxin b subunit (CTb) from the PVN and the BNST. Results obtained were consistent with an important role for both the mPFC and BNST in the mpPVN CRF cell response to air puff. We suggest a set of connections whereby a direct PVN projection from the ipsilateral vBNST is involved in the mpPVN response to air puff and this may, in turn, be modulated by an indirect projection from the mPFC to the BNST. (C) 2004 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In sheep intracerebroventricular injection of PACAP (10 nmol) significantly (P < 0.01) stimulated the levels of the dopamine metabolite DOPAC within the medial basal hypothalamus las measured by in vivo microdialysis) and this effect was temporally correlated with a significant (P < 0.05) suppression in peripheral prolactin concentrations. This result is in accord with the hypothesis that PACAP suppresses prolactin secretion from the anterior pituitary gland by stimulating dopamine release from tuberoinfundibular dopaminergic neurons. (C) 1998 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously described significant changes in GH-binding protein (GHBP) in pathological human pregnancy. There was a substantial elevation of GHBP in cases of noninsulin-dependent diabetes mellitus and a reduction in insulin-dependent diabetes mellitus. GHBP has the potential to modulate the proportion of free placental GH (PGH) and hence the impact on the maternal GH/insulin-like growth factor I (IGF-I) axis, fetal growth, and maternal glycemic status. The present study was undertaken to investigate the relationship among glycemia, GHBP, and PGH during pregnancy and to assess the impact of GHBP on the concentration of free PGH. We have extended the analysis of specimens to include measurements of GHBP, PGH, IGF-I, IGF-II, IGF-binding protein-1 (IGFBP-1), IGFSP-2, and IGFBP-3 and have related these to maternal characteristics, fetal growth, and glycemia. The simultaneous measurement of GHBP and PGH has for the first time allowed calculation of the free component of PGH and correlation of the free component to indexes of fetal growth and other endocrine markers. PGH, free PGH, IGF-I, and IGF-II were substantially decreased in IUGR at 28-30 weeks gestation (K28) and 36-38 weeks gestation (K36). The mean concentration (+/-SEM) of total PGH increased significantly from K28 to K36 (30.0 +/- 2.2 to 50.7 +/- 6.2 ng/mL; n = 40), as did the concentration of free PGH (23.4 +/- 2.3 to 43.7 +/- 6.0 ng/mL; n = 38). The mean percentage of free PGH was significantly less in IUGR than in normal subjects (67% vs. 79%; P < 0.01). Macrosomia was associated with an increase in these parameters that did not reach statistical significance. Multiple regression analysis revealed that PGH/IGF-I and IGFBP-5 account for 40% of the variance in birth weight. IGFBP-3 showed a significant correlation with IGF-I, IGF-II, and free and total PGK at K28 and K36. Noninsulin-dependent diabetes mellitus patients had a lower mean percentage of free PGH (65%; P < 0.01), and insulin-dependent diabetics had a higher mean percentage of free PGH (87%; P < 0.01) than normal subjects. Mean postprandial glucose at K28 correlated positively with PGH and free PGH (consistent with the hyperglycemic action of GH). GHBP correlated negatively with both postprandial and fasting glucose. Although GHBP correlated negatively with PGH (r = -0.52; P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Recent evidence suggests that cortical activity associated with voluntary movement is relatively shifted from medial to lateral premotor areas in Parkinson's disease. This shift occurs bilaterally even for unilateral responses. It is not clear whether the shift in processing reflects an overall change in movement strategy, thereby involving alternate cortical areas, or reflects a compensatory change whereby, given the appropriate conditions, less impaired cortical areas are able to provide a similar function in compensation for those areas which are more impaired. This issue was examined in patients with hemi-Parkinson's disease, in whom basal ganglia impairment is most pronounced in one hemisphere. Methods: Fourteen patients with hemi-Parkinson's disease and 15 age-matched control subjects performed a Go/NoGo finger movement task and the contingent negative variation (CNV) was recorded from 21 scalp positions. Results and conclusions: Maximal CNV amplitudes were found over central medial regions for control subjects, but were shifted more frontally for Parkinson's disease patients, reduced in amplitude over the midline and lateralized towards the side ipsilateral to the greatest basal ganglia impairment. This shift in cortical activity from medial to lateral areas in Parkinson's disease patients appears to reflect a compensatory mechanism operating predominantly on the side of greatest basal ganglia impairment. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known of the neural mechanisms of marsupial olfaction. However, functional magnetic resonance imaging (fMRI) has made it possible to visualize dynamic brain function in mammals without invasion. In this study, central processing of urinary pheromones was investigated in the brown antechinus, Antechinus stuartii, using fMRI. Images were obtained from 18 subjects (11 males, 7 females) in response to conspecific urinary olfactory stimuli. Significant indiscriminate activation occurred in the accessory olfactory bulb, entorhinal, frontal, and parietal cortices in response to both male and female urine. The paraventricular nucleus of hypothalamus, ventrolateral thalamic nucleus, and medial preoptic area were only activated in response to male urine. Results of this MRI study indicate that projections of accessory olfactory system are activated by chemo-sensory cues. Furthermore, it appears that, based on these experiments, urinary pheromones may act on the hypothalamo-pituitary-adrenocortical axis via the paraventricular nucleus of the hypothalamus and may play an important role in the unique life history pattern of A. stuartii. Finally, this study has demonstrated that fMRI may be a powerful tool for investigations of olfactory processes in mammals.