2 resultados para pooled estimates

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To examine the short-term health effects of air pollution on daily mortality in four Australian cities (Brisbane, Melbourne, Perth and Sydney), where more than 50% of Australians reside. Methods: The study used a similar protocol to APHEA2 (Air Pollution and Health: A European Approach) study and derived single-city and pooled estimates. Results: The results derived from the different approaches for the 1996-99 period showed consistent results for different statistical models used. There were significant effects on total mortality, (RR=1.0284 per 1 unit increase in nelphelometry [10(-4).m(-1)], RR=1.0011 per 1ppb increase in NO2), and on respiratory mortality (RR=1.0022 per 1ppb increase in O-2). No significant differences between cities were found, but the NO2 and particle effects may refer to the same impacts. Meta-analyses carried out for three cities yielded estimates for the increase in the daily total number of deaths of 0.2% (-0.8% to 1.2%) for a 10 mu g/m(3) increase in PM, concentration, and 0.9% (-0.7% to 2.5%) for a 10 mu g/m(3) increase in PM2.5 concentration. Conclusions: Air pollutants in Australian cities have significant effects on mortality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background. This paper examines the short-term health effects of air pollution on daily hospital admissions in Australian cities (those considered comprise more than 50% of the Australian population) for the period 1996-99. Methods: The study used a similar protocol to overseas studies and derived single city and pooled estimates using different statistical approaches to assess the accuracy of the results. Results: There was little difference between the results derived from the different statistical approaches for cardiovascular admissions, while in those for respiratory admissions there were differences. For three of the four cities (for the other the results were positive but not significant), fine particles (measured by nephelometry - bsp) and nitrogen dioxide (NO2) have a significant impact on cardiovascular admissions (for total cardiac admissions, RR=1.0856 for a one-unit increase in bsp (10(-4). m(-1)), RR=1.0023 for a 1 ppb increase in NO2). For three of the four cities (for the other, the results were negative and significant), fine particles, NO2 and ozone have a significant impact on respiratory admissions (for total elderly respiratory admissions, RR=1.0552 per 1 unit (10(-4).m(-1)) increase in bsp, RR=1.0027 per 1ppb increase in NO2, RR=10014 per 1 ppb increase in ozone for elderly asthma and COPD admissions). In all analyses the particle and NO2 impacts appear to be related. Conclusions: Similar to overseas studies, air pollution has an impact on hospital admissions in Australian cities, but there can be significant differences between cities.