13 resultados para polystyrene

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

By carefully controlling the concentration of alpha,omega-thiol polystyrene in solution, we achieved formation of unique monocyclic polystyrene chains (i.e., polymer chains with only one disulfide linkage). The presence of cyclic polystyrene was confirmed by its lower than expected molecular weight due to a lower hydrodynamic volume and loss of thiol groups as detected by using Ellman's reagent. The alpha,omega-thiol polystyrene was synthesized by polymerizing styrene in the presence of a difunctional RAFT agent and subsequent conversion of the dithioester end groups to thiols via the addition of hexylamine. Oxidation gave either monocyclic polymer chains (i.e., with only one disulfide linkage) or linear multiblock polymers with many disulfide linkages depending on the concentration of polymer used with greater chance of cyclization in more dilute solutions. At high polymer concentrations, linear multiblock polymers were formed. To control the MWD of these linear multiblocks, monofunctional X-PSTY (X = PhCH2C(S)-S-) was added. It was found that the greatest ratio of X-PSTY to X-PSTY-X resulted in a low M-n and PDI. We have shown that we can control both the structure and MWD using this chemistry, but more importantly such disulfide linkages can be readily reduced back to the starting polystyrene with thiol end groups, which has potential use for a recyclable polymer material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Miscibility and phase separation in the blends of phenolphthalein poly(aryl ether ketone) (PPAEK) and poly(ethylene oxide) (PEO) were investigated by means of differential scanning calorimetry (DSC). The PPAEK/PEO blends prepared by solution casting from N,N-dimethylformamide (DMF) displayed single composition-dependent glass transition temperatures (T-g), intermediate between those of the pure components, suggesting that the blend system is miscible in the amorphous state at all compositions. All the blends underwent phase separation at higher temperatures and the system exhibited a lower critical solution temperature (LCST) behavior. A step-heating thermal analysis was designed to determine the phase boundaries with DSC. The significant changes in the thermal properties of blends were utilized to judge the mixing status for the blends and the phase diagram was thus established. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An X-ray visualization technique has been used for the quantitative determination of local liquid holdups distribution and liquid holdup hysteresis in a nonwetting two-dimensional (2-D) packed bed. A medical diagnostic X-ray unit has been used to image the local holdups in a 2-D cold model having a random packing of expanded polystyrene beads. An aqueous barium chloride solution was used as a fluid to achieve good contrast on X-ray images. To quantify the local liquid holdup, a simple calibration technique has been developed that can be used for most of the radiological methods such as gamma ray and neutron radiography. The global value of total liquid holdup, obtained by X-ray method, has been compared with two conventional methods: drainage and tracer response. The X-ray technique, after validation, has been used to visualize and quantify, the liquid hysteresis phenomena in a packed bed. The liquid flows in preferred paths or channels that carry droplets/rivulets of increasing size and number as the liquid flow rate is increased. When the flow is reduced, these paths are retained and the higher liquid holdup that persists in these regions leads to the holdup hysteresis effect. Holdup in some regions of the packed bed may be an order of magnitude higher than average at a particular flow rate. (c) 2005 American Institute of Chemical Engineers

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies have demonstrated that polymeric biomaterials have the potential to support osteoblast growth and development for bone tissue repair. Poly( beta- hydroxybutyrate- co- beta- hydroxyvalerate) ( PHBV), a bioabsorbable, biocompatible polyhydroxy acid polymer, is an excellent candidate that, as yet, has not been extensively investigated for this purpose. As such, we examined the attachment characteristics, self- renewal capacity, and osteogenic potential of osteoblast- like cells ( MC3T3- E1 S14) when cultured on PHBV films compared with tissue culture polystyrene ( TCP). Cells were assayed over 2 weeks and examined for changes in morphology, attachment, number and proliferation status, alkaline phosphatase ( ALP) activity, calcium accumulation, nodule formation, and the expression of osteogenic genes. We found that these spindle- shaped MC3T3- E1 S14 cells made cell - cell and cell - substrate contact. Time- dependent cell attachment was shown to be accelerated on PHBV compared with collagen and laminin, but delayed compared with TCP and fibronectin. Cell number and the expression of ALP, osteopontin, and pro- collagen alpha 1( I) mRNA were comparable for cells grown on PHBV and TCP, with all these markers increasing over time. This demonstrates the ability of PHBV to support osteoblast cell function. However, a lag was observed for cells on PHBV in comparison with those on TCP for proliferation, ALP activity, and cbfa- 1 mRNA expression. In addition, we observed a reduction in total calcium accumulation, nodule formation, and osteocalcin mRNA expression. It is possible that this cellular response is a consequence of the contrasting surface properties of PHBV and TCP. The PHBV substrate used was rougher and more hydrophobic than TCP. Although further substrate analysis is required, we conclude that this polymer is a suitable candidate for the continued development as a biomaterial for bone tissue engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reviews the recent research and development of clay-based polymer nanocomposites. Clay minerals, due to their unique layered structure, rich intercalation chemistry and availability at low cost, are promising nanoparticle reinforcements for polymers to manufacture low-cost, lightweight and high performance nanocomposites. We introduce briefly the structure, properties and surface modification of clay minerals, followed by the processing and characterization techniques of polymer nanocomposites. The enhanced and novel properties of such nanocomposites are then discussed, including mechanical, thermal, barrier, electrical conductivity, biodegradability among others. In addition, their available commercial and potential applications in automotive, packaging, coating and pigment, electrical materials, and in particular biomedical fields are highlighted. Finally, the challenges for the future are discussed in terms of processing, characterization and the mechanisms governing the behaviour of these advanced materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We are using polymer templates to grow artificial artery grafts in vivo for the replacement of diseased blood vessels. We have previously shown that adhesion of macrophages to the template starts the graft formation. We present a study of the mechanics of macrophage adhesion to these templates on a single cell and single bond level with optical tweezers. For whole cells, in vitro cell adhesion densities decreased significantly from polymer templates polyethylene to silicone to Tygon (167, 135, and 65 cells/mm(2)). These cell densities were correlated with the graft formation success rate (50%, 25%, and 0%). Single-bond rupture forces at a loading rate of 450 pN/s were quantified by adhesion of trapped 2-mm spheres to macrophages. Rupture force distributions were dominated by nonspecific adhesion (forces, < 40 pN). On polystyrene, preadsorption of fibronectin or presence of serum proteins in the cell medium significantly enhanced adhesion strength from a mean rupture force of 20 pN to 28 pN or 33 pN, respectively. The enhancement of adhesion by fibronectin and serum is additive (mean rupture force of 43 pN). The fraction of specific binding forces in the presence of serum was similar for polystyrene and polymethyl-methacrylate, but specific binding forces were not observed for silica. Again, we found correlation to in vivo experiments, where the density of adherent cells is higher on polystyrene than on silica templates, and can be further enhanced by fibronectin adsorption. These findings show that in vitro adhesion testing can be used for template optimization and to substitute for in-vivo experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Xanthate-mediated (reversible addition-fragmentation chain transfer) emulsion polymerization has been used to create novel polystyrene nanoparticles with functionalized surfaces (see Figure) for the selective sequestering of heavy metals from water below ppm levels. These nanoparticles show a high degree of selectivity for Hg-II over Co-II. This technology has potential for the selective remediation of heavy metals from the human blood system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A unique hand-held gene gun is employed for ballistically delivering biomolecules to key cells in the skin and mucosa in the treatment of the major diseases. One of these types of devices, called the Contoured Shock Tube (CST), delivers powdered micro-particles to the skin with a narrow and highly controllable velocity distribution and a nominally uniform spatial distribution. In this paper, we apply a numerical approach to gain new insights in to the behavior of the CST prototype device. The drag correlations proposed by Henderson (1976), Igra and Takayama (1993) and Kurian and Das (1997) were applied to predict the micro-particle transport in a numerically simulated gas flow. Simulated pressure histories agree well with the corresponding static and Pitot pressure measurements, validating the CFD approach. The calculated velocity distributions show a good agreement, with the best prediction from Igra & Takayama correlation (maximum discrepancy of 5%). Key features of the gas dynamics and gas-particle interaction are discussed. Statistic analyses show a tight free-jet particle velocity distribution is achieved (570 +/- 14.7 m/s) for polystyrene particles (39 +/- 1 mu m), representative of a drug payload.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diffusion of styrene into linear low density polyethylene in a solution of supercritical CO2 was investigated using NMR microimaging. For both pure styrene and styrene dissolved in supercritical CO2, the diffusion was found to follow Fickian kinetics. Supercritical CO2 was found to enhance the rate and extent of diffusion of styrene into the substrate by up to three times under the conditions of this investigation, compared to pure styrene. NMR imaging was used to measure the concentration profiles of the styrene penetrants in real time, and the results were fitted to a Fickian model for diffusion. At a CO2 pressure of 150 bar and temperature of 40 degrees C, the diffusion coefficient of a 30 wt-% solution of styrene into LLDPE was calculated to be 1 X 10(-11) m(2). s(-1). This is significantly faster than the diffusion coefficient measured for pure styrene diffusion at 40 degrees C (3 x 10(-12) m(2). s(-1)). The diffusion coefficients determined by gravimetric analysis were slightly higher than those determined by the imaging method. This was probably due to residual styrene and/or polystyrene adhering to the surface of the films in the gravimetric technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small-angle neutron scattering measurements on a series of monodisperse linear entangled polystyrene melts in nonlinear flow through an abrupt 4:1 contraction have been made. Clear signatures of melt deformation and subsequent relaxation can be observed in the scattering patterns, which were taken along the centerline. These data are compared with the predictions of a recently derived molecular theory. Two levels of molecular theory are used: a detailed equation describing the evolution of molecular structure over all length scales relevant to the scattering data and a simplified version of the model, which is suitable for finite element computations. The velocity field for the complex melt flow is computed using the simplified model and scattering predictions are made by feeding these flow histories into the detailed model. The modeling quantitatively captures the full scattering intensity patterns over a broad range of data with independent variation of position within the contraction geometry, bulk flow rate and melt molecular weight. The study provides a strong, quantitative validation of current theoretical ideas concerning the microscopic dynamics of entangled polymers which builds upon existing comparisons with nonlinear mechanical stress data. Furthermore, we are able to confirm the appreciable length scale dependence of relaxation in polymer melts and highlight some wider implications of this phenomenon.