2 resultados para polyphasic taxonomic analysis

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: The aim of this study was to characterize the bacterial community adhering to the mucosa of the terminal ileum, and proximal and distal colon of the human digestive tract. Methods and Results: Pinch samples of the terminal ileum, proximal and distal colon were taken from a healthy 35-year-old, and a 68-year-old subject with mild diverticulosis. The 16S rDNA genes were amplified using a low number of PCR cycles, cloned, and sequenced. In total, 361 sequences were obtained comprising 70 operational taxonomic units (OTU), with a calculated coverage of 82.6%. Twenty-three per cent of OTU were common to the terminal ileum, proximal colon and distal colon, but 14% OTU were only found in the terminal ileum, and 43% were only associated with the proximal or distal colon. The most frequently represented clones were from the Clostridium group XIVa (24.7%), and the Bacteroidetes (Cytophaga-Flavobacteria-Bacteroides ) cluster (27.7%). Conclusion: Comparison of 16S rDNA clone libraries of the hindgut across mammalian species confirms that the distribution of phylogenetic groups is similar irrespective of the host species. Lesser site-related differences within groups or clusters of organisms, are probable. Significance and Impact: This study provides further evidence of the distribution of the bacteria on the mucosal surfaces of the human hindgut. Data contribute to the benchmarking of the microbial composition of the human digestive tract.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The conservation status of the dingo Canis familiaris dingo is threatened by hybridization with the domestic dog C. familiaris familiaris. A practical method that can estimate the different levels of hybridization in the field is urgently required so that animals below a specific threshold of dingo ancestry (e.g. 1/4 or 1/2 dingoes) can reliably be identified and removed from dingo populations. 2. Skull morphology has been traditionally used to assess dingo purity, but this method does not discriminate between the different levels of dingo ancestry in hybrids. Furthermore, measurements can only be reliably taken from the skulls of dead animals. 3. Methods based on the analysis of variation in DNA are able to discriminate between the different levels of hybridization, but the validity of this method has been questioned because the materials currently used as a reference for dingoes are from captive animals of unproven genetic purity. The use of pre-European materials would improve the accuracy of this method, but suitable material has not been found in sufficient quantity to develop a reliable reference population. Furthermore, current methods based on DNA are impractical for the field-based discrimination of hybrids because samples require laboratory analysis. 4. Coat colour has also been used to estimate the extent of hybridization and is possibly the most practical method to apply in the field. However, this method may not be as powerful as genetic or morphological analyses because some hybrids (e.g. Australian cattle dog x dingo) are similar to dingoes in coat colour and body form. This problem may be alleviated by using additional visual characteristics such as the presence/absence of ticking and white markings.