41 resultados para plate equation
em University of Queensland eSpace - Australia
Resumo:
We derive analytical solutions for the three-dimensional time-dependent buckling of a non-Newtonian viscous plate in a less viscous medium. For the plate we assume a power-law rheology. The principal, axes of the stretching D-ij in the homogeneously deformed ground state are parallel and orthogonal to the bounding surfaces of the plate in the flat state. In the model formulation the action of the less viscous medium is replaced by equivalent reaction forces. The reaction forces are assumed to be parallel to the normal vector of the deformed plate surfaces. As a consequence, the buckling process is driven by the differences between the in-plane stresses and out of plane stress, and not by the in-plane stresses alone as assumed in previous models. The governing differential equation is essentially an orthotropic plate equation for rate dependent material, under biaxial pre-stress, supported by a viscous medium. The differential problem is solved by means of Fourier transformation and largest growth coefficients and corresponding wavenumbers are evaluated. We discuss in detail fold evolutions for isotropic in-plane stretching (D-11 = D-22), uniaxial plane straining (D-22 = 0) and in-plane flattening (D-11 = -2D(22)). Three-dimensional plots illustrate the stages of fold evolution for random initial perturbations or initial embryonic folds with axes non-parallel to the maximum compression axis. For all situations, one dominant set of folds develops normal to D-11, although the dominant wavelength differs from the Biot dominant wavelength except when the plate has a purely Newtonian viscosity. However, in the direction parallel to D-22, there exist infinitely many modes in the vicinity of the dominant wavelength which grow only marginally slower than the one corresponding to the dominant wavelength. This means that, except for very special initial conditions, the appearance of a three-dimensional fold will always be governed by at least two wavelengths. The wavelength in the direction parallel to D-11 is the dominant wavelength, and the wavelength(s) in the direction parallel to D-22 is determined essentially by the statistics of the initial state. A comparable sensitivity to the initial geometry does not exist in the classic two-dimensional folding models. In conformity with tradition we have applied Kirchhoff's hypothesis to constrain the cross-sectional rotations of the plate. We investigate the validity of this hypothesis within the framework of Reissner's plate theory. We also include a discussion of the effects of adding elasticity into the constitutive relations and show that there exist critical ratios of the relaxation times of the plate and the embedding medium for which two dominant wavelengths develop, one at ca. 2.5 of the classical Biot dominant wavelength and the other at ca. 0.45 of this wavelength. We propose that herein lies the origin of parasitic folds well known in natural examples.
Resumo:
The combined approach of the molecular-kinetic and hydrodynamic theories for description of the motion of three-phase gas-liquid-solid contact lines has been examined using the Wilhelmy plate method. The whole dynamic meniscus has been divided into molecular, hydrodynamic, and static-like regions. The Young-Laplace equation and the molecular-kinetic and hydrodynamic dewetting theories have been applied to describe the meniscus profiles and contact angle. The dissipative forces accompanying the dynamic dewetting have also been investigated. The experiments with a Wilhelmy plate made from an acrylic polymer sheet were carried out using a computerized apparatus for contact angle analysis (OCA 20, DataPhysics, Germany). The extrapolated dynamic contact angle versus velocity of the three-phase contact line for Milli-Q water and 5 x 10(-4) M SDBS solution was experimentally obtained and compared with the combined MHD models with low and moderate Reynolds numbers. The models predict similar results for the extrapolated contact angle. SDBS decreases the equilibrium contact angle and increases the molecular jumping length but does not affect the molecular frequency significantly. The hydrodynamic deformation of the meniscus, viscous dissipation, and friction were also influenced by the SDBS surfactant. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
We consider the semilinear Schrodinger equation -Deltau+V(x)u= K(x) \u \ (2*-2 u) + g(x; u), u is an element of W-1,W-2 (R-N), where N greater than or equal to4, V, K, g are periodic in x(j) for 1 less than or equal toj less than or equal toN, K>0, g is of subcritical growth and 0 is in a gap of the spectrum of -Delta +V. We show that under suitable hypotheses this equation has a solution u not equal 0. In particular, such a solution exists if K equivalent to 1 and g equivalent to 0.
Resumo:
An approximate analytical technique employing a finite integral transform is developed to solve the reaction diffusion problem with Michaelis-Menten kinetics in a solid of general shape. A simple infinite series solution for the substrate concentration is obtained as a function of the Thiele modulus, modified Sherwood number, and Michaelis constant. An iteration scheme is developed to bring the approximate solution closer to the exact solution. Comparison with the known exact solutions for slab geometry (quadrature) and numerically exact solutions for spherical geometry (orthogonal collocation) shows excellent agreement for all values of the Thiele modulus and Michaelis constant.
Resumo:
A reversible linear master equation model is presented for pressure- and temperature-dependent bimolecular reactions proceeding via multiple long-lived intermediates. This kinetic treatment, which applies when the reactions are measured under pseudo-first-order conditions, facilitates accurate and efficient simulation of the time dependence of the populations of reactants, intermediate species and products. Detailed exploratory calculations have been carried out to demonstrate the capabilities of the approach, with applications to the bimolecular association reaction C3H6 + H reversible arrow C3H7 and the bimolecular chemical activation reaction C2H2 +(CH2)-C-1--> C3H3+H. The efficiency of the method can be dramatically enhanced through use of a diffusion approximation to the master equation, and a methodology for exploiting the sparse structure of the resulting rate matrix is established.
Resumo:
The study of the mechanisms of mechanical alloying requires knowledge of the impact characteristics between the ball and vial in the presence of milling powders. In this paper, foe falling experiments have br cn used to investigate the characteristics of impact events involved in mechanical milling. The effects of milling conditions, including impact velocity, ball size and powder thickness. on the coefficient of restitution and impact force are studied. It is found that the powder has a significant influence on the impact process due to its porous structure. This effect can be demonstrated using a modified Kelvin model. This study also confirms that the impact force is a relevant parameter for characterising the impact event due to its sensitivity to the milling conditions. (C) 1998 Elsevier Science S.A.
Resumo:
In view of the relative risk of intracranial haemorrhage and major bleeding with thrombolytic therapy, it is important ro identify as early as possible the low risk patient who may not have a net clinical benefit from thrombolysis in the setting of acute myocardial infarction. An analysis of 5434 hospital-treated patients with myocardial infarction in the Perth MONICA study showed that age below 60 and absence of previous infarction or diabetes, shock, pulmonary oedema, cardiac arrest and Q-wave or left bundle branch block on the initial ECG identified a large group of patients with a 28 day mortality of only 1%, and one year mortality of only 2%. Identification of baseline risk in this way helps refine the risk-benefit equation for thrombolytic therapy, and may help avoid unnecessary use of thrombolysis in those unlikely to benefit.
Resumo:
The truncation errors associated with finite difference solutions of the advection-dispersion equation with first-order reaction are formulated from a Taylor analysis. The error expressions are based on a general form of the corresponding difference equation and a temporally and spatially weighted parametric approach is used for differentiating among the various finite difference schemes. The numerical truncation errors are defined using Peclet and Courant numbers and a new Sink/Source dimensionless number. It is shown that all of the finite difference schemes suffer from truncation errors. Tn particular it is shown that the Crank-Nicolson approximation scheme does not have second order accuracy for this case. The effects of these truncation errors on the solution of an advection-dispersion equation with a first order reaction term are demonstrated by comparison with an analytical solution. The results show that these errors are not negligible and that correcting the finite difference scheme for them results in a more accurate solution. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The chemical potential of adsorbed film inside cylindrical mesopores is dependent on the attractive interactions between the adsorbed molecules and adsorbent, the curvature of gas/adsorbed phase interface, and surface tension. A state equation of the adsorbed film is proposed to take into account the above factors. Nitrogen adsorption on model adsorbents, MCM-41, which exhibit uniform cylindrical channels, are used to verify the theoretical analysis. The proposed theory is capable of describing the important features of adsorption processes in cylindrical mesopores. According to this theory, at a given relative pressure, the smaller the pore radius is, the thicker the adsorbed film will be. The thickening of adsorbed films in the pores as the vapor pressure increases inevitably causes an increase in the interface curvature, which consequently leads to capillary condensation. Besides, this study confirmed that the interface tension depends substantially on the interface curvature in small mesopores. A quantitative relationship between the condensation pressure and the pore radius can be derived from the state equation and used to predict the pore radius from a condensation pressure, or vice versa.
Resumo:
Groundwater waves, that is, water table fluctuations, are a natural phenomenon in coastal aquifers. They represent an important part of the interaction between the ocean and aquifer and affect the mass exchange between them. This paper presents a new groundwater wave equation. Because it includes the effects of vertical flows and capillarity, the new equation is applicable to both intermediate-depth aquifers and high-frequency waves. Compared with the wave equation derived by Nielsen ed al. [1997], the present equation provides a closer representation of groundwater waves. In particular, it predicts high-frequency water table fluctuations as observed in the field. A validation of the new equation has been carried out by comparing the analytical solutions to it with predictions from direct simulations using the numerical model SUTRA. The effects of various physical parameters and their relative importance are also discussed.
Resumo:
We give an asymptotic analytic solution for the generic atom-laser system with gain in a D-dimensional trap, and show that this has a non-Thomas-Fermi behavior. The effect is due to Bose-enhanced condensate growth, which creates a local-density maximum and a corresponding outward momentum component. In addition, the solution predicts amplified center-of-mass oscillations, leading to enhanced center-of-mass temperature.
Resumo:
The earth's tectonic plates are strong, viscoelastic shells which make up the outermost part of a thermally convecting, predominantly viscous layer. Brittle failure of the lithosphere occurs when stresses are high. In order to build a realistic simulation of the planet's evolution, the complete viscoelastic/brittle convection system needs to be considered. A particle-in-cell finite element method is demonstrated which can simulate very large deformation viscoelasticity with a strain-dependent yield stress. This is applied to a plate-deformation problem. Numerical accuracy is demonstrated relative to analytic benchmarks, and the characteristics of the method are discussed.