230 resultados para plant models
em University of Queensland eSpace - Australia
Resumo:
Functional-structural plant models that include detailed mechanistic representation of underlying physiological processes can be expensive to construct and the resulting models can also be extremely complicated. On the other hand, purely empirical models are not able to simulate plant adaptability and response to different conditions. In this paper, we present an intermediate approach to modelling plant function that can simulate plant response without requiring detailed knowledge of underlying physiology. Plant function is modelled using a 'canonical' modelling approach, which uses compartment models with flux functions of a standard mathematical form, while plant structure is modelled using L-systems. Two modelling examples are used to demonstrate that canonical modelling can be used in conjunction with L-systems to create functional-structural plant models where function is represented either in an accurate and descriptive way, or in a more mechanistic and explanatory way. We conclude that canonical modelling provides a useful, flexible and relatively simple approach to modelling plant function at an intermediate level of abstraction.
Resumo:
Cpfg is a program for simulating and visualizing plant development, based on the theory of L-systems. A special-purpose programming language, used to specify plant models, is an essential feature of cpfg. We review postulates of L-system theory that have influenced the design of this language. We then present the main constructs of this language, and evaluate it from a user's perspective.
Resumo:
Recent advances in computer technology have made it possible to create virtual plants by simulating the details of structural development of individual plants. Software has been developed that processes plant models expressed in a special purpose mini-language based on the Lindenmayer system formalism. These models can be extended from their architectural basis to capture plant physiology by integrating them with crop models, which estimate biomass production as a consequence of environmental inputs. Through this process, virtual plants will gain the ability to react to broad environmental conditions, while crop models will gain a visualisation component. This integration requires the resolution of the fundamentally different time scales underlying the approaches. Architectural models are usually based on physiological time; each time step encompasses the same amount of development in the plant, without regard to the passage of real time. In contrast, physiological models are based in real time; the amount of development in a time step is dependent on environmental conditions during the period. This paper provides a background on the plant modelling language, then describes how widely-used concepts of thermal time can be implemented to resolve these time scale differences. The process is illustrated using a case study. (C) 1997 Elsevier Science Ltd.
Resumo:
This paper presents a new method for producing a functional-structural plant model that simulates response to different growth conditions, yet does not require detailed knowledge of underlying physiology. The example used to present this method is the modelling of the mountain birch tree. This new functional-structural modelling approach is based on linking an L-system representation of the dynamic structure of the plant with a canonical mathematical model of plant function. Growth indicated by the canonical model is allocated to the structural model according to probabilistic growth rules, such as rules for the placement and length of new shoots, which were derived from an analysis of architectural data. The main advantage of the approach is that it is relatively simple compared to the prevalent process-based functional-structural plant models and does not require a detailed understanding of underlying physiological processes, yet it is able to capture important aspects of plant function and adaptability, unlike simple empirical models. This approach, combining canonical modelling, architectural analysis and L-systems, thus fills the important role of providing an intermediate level of abstraction between the two extremes of deeply mechanistic process-based modelling and purely empirical modelling. We also investigated the relative importance of various aspects of this integrated modelling approach by analysing the sensitivity of the standard birch model to a number of variations in its parameters, functions and algorithms. The results show that using light as the sole factor determining the structural location of new growth gives satisfactory results. Including the influence of additional regulating factors made little difference to global characteristics of the emergent architecture. Changing the form of the probability functions and using alternative methods for choosing the sites of new growth also had little effect. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Background and Aims Plants regulate their architecture strongly in response to density, and there is evidence that this involves changes in the duration of leaf extension. This questions the approximation, central in crop models, that development follows a fixed thermal time schedule. The aim of this research is to investigate, using maize as a model, how the kinetics of extension of grass leaves change with density, and to propose directions for inclusion of this regulation in plant models. • Methods Periodic dissection of plants allowed the establishment of the kinetics of lamina and sheath extension for two contrasting sowing densities. The temperature of the growing zone was measured with thermocouples. Two-phase (exponential plus linear) models were fitted to the data, allowing analysis of the timing of the phase changes of extension, and the extension rate of sheaths and blades during both phases. • Key Results The duration of lamina extension dictated the variation in lamina length between treatments. The lower phytomers were longer at high density, with delayed onset of sheath extension allowing more time for the lamina to extend. In the upper phytomers—which were shorter at high density—the laminae had a lower relative extension rate (RER) in the exponential phase and delayed onset of linear extension, and less time available for extension since early sheath extension was not delayed. • Conclusions The relative timing of the onset of fast extension of the lamina with that of sheath development is the main determinant of the response of lamina length to density. Evidence is presented that the contrasting behaviour of lower and upper phytomers is related to differing regulation of sheath ontogeny before and after panicle initiation. A conceptual model is proposed to explain how the observed asynchrony between lamina and sheath development is regulated.
Linking biophysical and genetic models to integrate physiology, molecular biology and plant breeding
Resumo:
Models of plant architecture allow us to explore how genotype environment interactions effect the development of plant phenotypes. Such models generate masses of data organised in complex hierarchies. This paper presents a generic system for creating and automatically populating a relational database from data generated by the widely used L-system approach to modelling plant morphogenesis. Techniques from compiler technology are applied to generate attributes (new fields) in the database, to simplify query development for the recursively-structured branching relationship. Use of biological terminology in an interactive query builder contributes towards making the system biologist-friendly. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Realistic time frames in which management decisions are made often preclude the completion of the detailed analyses necessary for conservation planning. Under these circumstances, efficient alternatives may assist in approximating the results of more thorough studies that require extensive resources and time. We outline a set of concepts and formulas that may be used in lieu of detailed population viability analyses and habitat modeling exercises to estimate the protected areas required to provide desirable conservation outcomes for a suite of threatened plant species. We used expert judgment of parameters and assessment of a population size that results in a specified quasiextinction risk based on simple dynamic models The area required to support a population of this size is adjusted to take into account deterministic and stochastic human influences, including small-scale disturbance deterministic trends such as habitat loss, and changes in population density through processes such as predation and competition. We set targets for different disturbance regimes and geographic regions. We applied our methods to Banksia cuneata, Boronia keysii, and Parsonsia dorrigoensis, resulting in target areas for conservation of 1102, 733, and 1084 ha, respectively. These results provide guidance on target areas and priorities for conservation strategies.
Resumo:
The role of physiological understanding in improving the efficiency of breeding programs is examined largely from the perspective of conventional breeding programs. Impact of physiological research to date on breeding programs, and the nature of that research, was assessed from (i) responses to a questionnaire distributed to plant breeders and physiologists, and (ii) a survey of literature abstracts. Ways to better utilise physiological understanding for improving breeding programs are suggested, together with possible constraints to delivering beneficial outcomes. Responses from the questionnaire indicated a general view that the contribution by crop physiology to date has been modest. However, most of those surveyed expected the contribution to be larger in the next 20 years. Some constraints to progress perceived by breeders and physiologists were highlighted. The survey of literature abstracts indicated that from a plant breeding perspective, much physiological research is not progressing further than making suggestions about possible approaches to selection. There was limited evidence in the literature of objective comparison of such suggestions with existing methodology, or of development and application of these within active breeding programs. It is argued in this paper that the development of outputs from physiological research for breeding requires a good understanding of the breeding program(s) being serviced and factors affecting its performance. Simple quantitative genetic models, or at least the ideas they represent, should be considered in conducting physiological research and in envisaging and evaluating outputs. The key steps of a generalised breeding program are outlined, and the potential pathways for physiological understanding to impact on these steps are discussed. Impact on breeding programs may arise through (i) better choice of environments in which to conduct selection trials, (ii) identification of selection criteria and traits for focused introgression programs, and (iii) identifying traits for indirect selection criteria as an adjunct to criteria already used. While many breeders and physiologists apparently recognise that physiological understanding may have a major role in the first area, there appears to be relatively Little research activity targeting this issue, and a corresponding bias, arguably unjustified, toward examining traits for indirect selection. Furthermore, research on traits aimed at crop improvement is often deficient because key genetic parameters, such as genetic variation in relevant breeding populations and genetic (as opposed to phenotypic) correlations with yield or other characters of economic importance, are not properly considered in the research. Some areas requiring special attention for successfully interfacing physiology research with breeding are discussed. These include (i) the need to work with relevant genetic populations, (ii) close integration of the physiological research with an active breeding program, and (iii) the dangers of a pre-defined or narrow focus in the physiological research.
Resumo:
An important consideration in the development of mathematical models for dynamic simulation, is the identification of the appropriate mathematical structure. By building models with an efficient structure which is devoid of redundancy, it is possible to create simple, accurate and functional models. This leads not only to efficient simulation, but to a deeper understanding of the important dynamic relationships within the process. In this paper, a method is proposed for systematic model development for startup and shutdown simulation which is based on the identification of the essential process structure. The key tool in this analysis is the method of nonlinear perturbations for structural identification and model reduction. Starting from a detailed mathematical process description both singular and regular structural perturbations are detected. These techniques are then used to give insight into the system structure and where appropriate to eliminate superfluous model equations or reduce them to other forms. This process retains the ability to interpret the reduced order model in terms of the physico-chemical phenomena. Using this model reduction technique it is possible to attribute observable dynamics to particular unit operations within the process. This relationship then highlights the unit operations which must be accurately modelled in order to develop a robust plant model. The technique generates detailed insight into the dynamic structure of the models providing a basis for system re-design and dynamic analysis. The technique is illustrated on the modelling for an evaporator startup. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
Understanding the genetic architecture of quantitative traits can greatly assist the design of strategies for their manipulation in plant-breeding programs. For a number of traits, genetic variation can be the result of segregation of a few major genes and many polygenes (minor genes). The joint segregation analysis (JSA) is a maximum-likelihood approach for fitting segregation models through the simultaneous use of phenotypic information from multiple generations. Our objective in this paper was to use computer simulation to quantify the power of the JSA method for testing the mixed-inheritance model for quantitative traits when it was applied to the six basic generations: both parents (P-1 and P-2), F-1, F-2, and both backcross generations (B-1 and B-2) derived from crossing the F-1 to each parent. A total of 1968 genetic model-experiment scenarios were considered in the simulation study to quantify the power of the method. Factors that interacted to influence the power of the JSA method to correctly detect genetic models were: (1) whether there were one or two major genes in combination with polygenes, (2) the heritability of the major genes and polygenes, (3) the level of dispersion of the major genes and polygenes between the two parents, and (4) the number of individuals examined in each generation (population size). The greatest levels of power were observed for the genetic models defined with simple inheritance; e.g., the power was greater than 90% for the one major gene model, regardless of the population size and major-gene heritability. Lower levels of power were observed for the genetic models with complex inheritance (major genes and polygenes), low heritability, small population sizes and a large dispersion of favourable genes among the two parents; e.g., the power was less than 5% for the two major-gene model with a heritability value of 0.3 and population sizes of 100 individuals. The JSA methodology was then applied to a previously studied sorghum data-set to investigate the genetic control of the putative drought resistance-trait osmotic adjustment in three crosses. The previous study concluded that there were two major genes segregating for osmotic adjustment in the three crosses. Application of the JSA method resulted in a change in the proposed genetic model. The presence of the two major genes was confirmed with the addition of an unspecified number of polygenes.
Resumo:
Developments in computer and three dimensional (3D) digitiser technologies have made it possible to keep track of the broad range of data required to simulate an insect moving around or over the highly heterogeneous habitat of a plant's surface. Properties of plant parts vary within a complex canopy architecture, and insect damage can induce further changes that affect an animal's movements, development and likelihood of survival. Models of plant architectural development based on Lindenmayer systems (L-systems) serve as dynamic platforms for simulation of insect movement, providing ail explicit model of the developing 3D structure of a plant as well as allowing physiological processes associated with plant growth and responses to damage to be described and Simulated. Simple examples of the use of the L-system formalism to model insect movement, operating Lit different spatial scales-from insects foraging on an individual plant to insects flying around plants in a field-are presented. Such models can be used to explore questions about the consequences of changes in environmental architecture and configuration on host finding, exploitation and its population consequences. In effect this model is a 'virtual ecosystem' laboratory to address local as well as landscape-level questions pertinent to plant-insect interactions, taking plant architecture into account. (C) 2002 Elsevier Science B.V. All rights reserved.