7 resultados para planetary ball mill

em University of Queensland eSpace - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mineral processing plants use two main processes; these are comminution and separation. The objective of the comminution process is to break complex particles consisting of numerous minerals into smaller simpler particles where individual particles consist primarily of only one mineral. The process in which the mineral composition distribution in particles changes due to breakage is called 'liberation'. The purpose of separation is to separate particles consisting of valuable mineral from those containing nonvaluable mineral. The energy required to break particles to fine sizes is expensive, and therefore the mineral processing engineer must design the circuit so that the breakage of liberated particles is reduced in favour of breaking composite particles. In order to effectively optimize a circuit through simulation it is necessary to predict how the mineral composition distributions change due to comminution. Such a model is called a 'liberation model for comminution'. It was generally considered that such a model should incorporate information about the ore, such as the texture. However, the relationship between the feed and product particles can be estimated using a probability method, with the probability being defined as the probability that a feed particle of a particular composition and size will form a particular product particle of a particular size and composition. The model is based on maximizing the entropy of the probability subject to mass constraints and composition constraint. Not only does this methodology allow a liberation model to be developed for binary particles, but also for particles consisting of many minerals. Results from applying the model to real plant ore are presented. A laboratory ball mill was used to break particles. The results from this experiment were used to estimate the kernel which represents the relationship between parent and progeny particles. A second feed, consisting primarily of heavy particles subsampled from the main ore was then ground through the same mill. The results from the first experiment were used to predict the product of the second experiment. The agreement between the predicted results and the actual results are very good. It is therefore recommended that more extensive validation is needed to fully evaluate the substance of the method. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cylpebs are slightly tapered cylindrical grinding media with a ratio of length to diameter of unity. The manufactures have made conflicting claims regarding the milling performance of Cylpebs in comparison with balls. One major point of interest is which one grinds finer at the same operating conditions. The difficulty in comparison is due to the shape difference. The two grinding media have different surface area, bulk density and contact mechanisms in grinding action. Comparative tests were conducted using the two types of grinding media in a laboratory Bond ball mill at various conditions of equality such as media mass, size distribution, surface area and input specific energy. The laboratory results indicate that at the same specific energy input level the Cylpebs produce a product with slightly less oversize due to their greater surface area, but essentially the same sizing at the fine end as that produced with the balls. The reason may be that the advantage of greater surface area is balanced by the line contact and area contact grinding actions with the Cylpebs. A new ball mill scale-up procedure [Man, Y.T., 2001. Model-based procedure for scale-up of wet, overflow ball mills, Part 1: outline of the methodology. Minerals Engineering 14 (10), 1237-1246] was employed to predict grinding performance of an industrial mill from the laboratory test results. The predicted full scale operation was compared with the plant survey data. Some problems in the original scale-up procedures were identified. The scale-up procedure was therefore modified to allow the predicted ball mill performance to match the observed one. The calibrated scale-up procedure was used to predict the Cylpebs performance in the full scale industrial mill using the laboratory tests results. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The best accepted method for design of autogenous and semi-autogenous (AG/SAG) mills is to carry out pilot scale test work using a 1.8 m diameter by 0.6 m long pilot scale test mill. The load in such a mill typically contains 250,000-450,000 particles larger than 6 mm, allowing correct representation of more than 90% of the charge in Discrete Element Method (DEM) simulations. Most AG/SAG mills use discharge grate slots which are 15 mm or more in width. The mass in each size fraction usually decreases rapidly below grate size. This scale of DEM model is now within the possible range of standard workstations running an efficient DEM code. This paper describes various ways of extracting collision data front the DEM model and translating it into breakage estimates. Account is taken of the different breakage mechanisms (impact and abrasion) and of the specific impact histories of the particles in order to assess the breakage rates for various size fractions in the mills. At some future time, the integration of smoothed particle hydrodynamics with DEM will allow for the inclusion of slurry within the pilot mill simulation. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modelling and optimization of the power draw of large SAG/AG mills is important due to the large power draw which modern mills require (5-10 MW). The cost of grinding is the single biggest cost within the entire process of mineral extraction. Traditionally, modelling of the mill power draw has been done using empirical models. Although these models are reliable, they cannot model mills and operating conditions which are not within the model database boundaries. Also, due to its static nature, the impact of the changing conditions within the mill on the power draw cannot be determined using such models. Despite advances in computing power, discrete element method (DEM) modelling of large mills with many thousands of particles could be a time consuming task. The speed of computation is determined principally by two parameters: number of particles involved and material properties. The computational time step is determined by the size of the smallest particle present in the model and material properties (stiffness). In the case of small particles, the computational time step will be short, whilst in the case of large particles; the computation time step will be larger. Hence, from the point of view of time required for modelling (which usually corresponds to time required for 3-4 mill revolutions), it will be advantageous that the smallest particles in the model are not unnecessarily too small. The objective of this work is to compare the net power draw of the mill whose charge is characterised by different size distributions, while preserving the constant mass of the charge and mill speed. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stirred Mills are becoming increasingly used for fine and ultra-fine grinding. This technology is still poorly understood when used in the mineral processing context. This makes process optimisation of such devices problematic. 3D DEM simulations of the flow of grinding media in pilot scale tower mills and pin mills are carried out in order to investigate the relative performance of these stirred mills. In the first part of this paper, media flow patterns and energy absorption rates and distributions were analysed to provide a good understanding of the media flow and the collisional environment in these mills. In this second part we analyse steady state coherent flow structures, liner stress and wear by impact and abrasion. We also examine mixing and transport efficiency. Together these provide a comprehensive understanding of all the key processes operating in these mills and a clear understanding of the relative performance issues. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stirred mills are becoming increasingly used for fine and ultra-fine grinding. This technology is still poorly understood when used in the mineral processing context. This makes process optimisation of such devices problematic. 3D DEM simulations of the flow of grinding media in pilot scale tower mills and pin mills are carried out in order to investigate the relative performance of these stirred mills. Media flow patterns and energy absorption rates and distributions are analysed here. In the second part of this paper, coherent flow structures, equipment wear and mixing and transport efficiency are analysed. (C) 2006 Published by Elsevier Ltd.