21 resultados para phylogenetic inertia
em University of Queensland eSpace - Australia
Resumo:
The reductive dechlorination (RD) of tetrachloroethene (PCE) to vinyl chloride (VC) and, to a lesser extent, to ethene (ETH) by an anaerobic microbial community has been investigated by studying the processes and kinetics of the main physiological components of the consortium. Molecular hydrogen, produced by methanol-utilizing acetogens, was the electron donor for the PCE RD to VC and ETH without forming any appreciable amount of other chlorinated intermediates and in the near absence of methanogenic activity. The microbial community structure of the consortium was investigated by preparing a 1 6S rDNA clone library and by fluorescence in situ hybridization (FISH). The PCR primers used in the clone library allowed the harvest of 16SrDNA from both bacterial and archaeal members in the community. A total of 616 clones were screened by RFLP analysis of the clone inserts followed by the sequencing of RFLP group representatives and phylogenetic analysis. The clone library contained sequences mostly from hitherto undescribed bacteria. No sequences similar to those of the known RD bacteria like 'Dehalococcoides ethenogenes' or Dehalobacter restrictus were found in the clone library, and none of these bacteria was present in the RD consortium according to FISH. Almost all clones fell into six previously described phyla of the bacterial domain, with the majority (56(.)6%) being deep-branching members of the Spirochaetes phylum. Other clones were in the Firmicutes phylum (18(.)5%), the Chloroflexi phylum (16(.)4%), the Bacteroidetes phylum (6(.)3%), the Synergistes genus (11(.)1%) and a lineage that could not be affiliated with existing phyla (11(.)1%). No archaeal clones were found in the clone library. Owing to the phylogenetic novelty of the microbial community with regard to previously cultured microorganisms, no specific microbial component(s) could be hypothetically affiliated with the RD phenotype. The predominance of Spirochaetes in the microbial consortium, the main group revealed by clone library analysis, was confirmed by FISH using a purposely developed probe.
Resumo:
The sheathed filamentous bacterium known as strain CT3, isolated by micromanipulation from an activated sludge treatment plant in Italy, is a member of the genus Thiothrix in the gamma-Proteobacteria according to 16S rDNA sequence analysis. The closest phylogenetic neighbours of strain CT3 are strains I and Q(T), which were also isolated from activated sludge and belong to the species Thiothrix fructosivorans. These strains have respectively 99.2 and 99.4 % similarity to CT3 by 16S rDNA sequence comparison. CT3 shows 63-67 % DNA-DNA hybridization with strain I, which is the only currently viable strain of T. fructosivorans. CT3 is the second strain in the genus Thiothrix that has been shown to be capable of growing autotrophically with reduced sulfur compounds as the sole energy source; autotrophy was also confirmed in strain I. The first reported chemolithoautotrophic isolate of this genus was a strain of 'Thiothrix ramosa' that was isolated from a hydrogen sulfide spring and is morphologically distinguishable from all other described strains of Thiothrix, including CT3. CT3 is an aerobic organism that is non-fermentative, not capable of denitrification and able to grow heterotrophically. Autotrophy in the genus Thiothrix should be investigated more fully to better define the taxonomy of this genus.
Resumo:
Phylogenetic relationships within the Capsalidae (Monogenea) were examined Using large subunit ribosomal DNA sequences from 17 capsalid species (representing 7 genera, 5 subfamilies), 2 outgroup taxa (Monocotylidae) plus Udonella caligorum (Udonellidae). Trees were constructed using maximum likelihood, minimum evolution and maximum parsimony algorithms. An initial tree, generated from sequences 315 bases long, Suggests that Capsalinae, Encotyllabinae, Entobdellinae and Trochopodinae are monophyletic, but that Benedeniinae is paraphyletic. Analyses indicate that Neobenedenia, currently in the Benedeniinae, should perhaps be placed in 2 separate subfamily. An additional analysis was made which omitted 3 capsalid taxa (for which only short sequences were available) and all outgroup taxa because of alignment difficulties. Sequence length increased to 693 bases and good branch support was achieved. The Benedeniinae was again paraphyletic. Higher-level classification of the Capsalidae, evolution of the Entobdellinae and issues of species identity in Neobenedenia are discussed.
Resumo:
Sequences of small-subunit rRNA genes were determined for Dermocystidium percae and a new Dermocystidium species established as D. fennicum sp. n. from perch in Finland. On the basis of alignment and phylogenetic analysis both species were placed in the Dermocystidium-Rhinosporidium clade within Ichthyosporea, D. fennicum as a specific sister taxon to D. salmonis, and D. percae in a clade different from D. fennicum. The ultrastructures of both species well agree with the characteristics approved within Ichthyosporea: walled spores produce uniflagellate zoospores lacking a collar or cortical alveoli. The two Dermocystidium species resemble Rhinosporidium seeberi (as described by light microscope), a member of the nearest relative genus, but differ in that in R. seeberi plasmodia have thousands of nuclei discernible, endospores are discharged through a pore in the wall of the sporangium, and zoospores have not been revealed. The plasmodial stages of both Dermocystidium species have a most unusual behaviour of nuclei, although we do not actually know how the nuclei transform during the development. Early stages have an ordinary nucleus with double, fenestrated envelope. In middle-aged plasmodia ordinary nuclei seem to be totally absent or are only seldom discernible until prior to sporogony, when rather numerous nuclei again reappear. Meanwhile single-membrane vacuoles with coarsely granular content, or complicated membranous systems were discernible. Ordinary nuclei may be re-formed within these vacuoles or systems. In D. percae small canaliculi and in D. fennicum minute vesicles may aid the nucleus-cytoplasm interchange of matter before formation of double-membrane-enveloped nuclei. Dermocystidium represents a unique case when a stage of the life cycle of an eukaryote lacks a typical nucleus.
Resumo:
The Paraneoptera (Hemipteroid Assemblage) comprises the orders Thysanoptera (thrips), Hemiptera (bugs), Phthiraptera (lice) and Psocoptera (booklice and barklice). The phylogenetic relationships among the Psocodea (Phthiraptera and Psocoptera), Thysanoptera and Hemiptera are unresolved, as are some relationships within the Psocodea. Here, we present phylogenetic hypotheses inferred from SSU rDNA sequences; the most controversial of which is the apparent paraphyly of the Phthiraptera, which are parasites of birds and mammals, with respect to one family of Psocoptera, the Liposcelididae. The order Psocoptera and the suborder that contains the Liposcelididae, the Troctomorpha, are also paraphyletic. The two remaining psocopteran suborders, the Psocomorpha and the Trogiomorpha, are apparently monophyletic. The Liposcelididae is most closely related to lice from the suborder Amblycera. These results suggest that the taxonomy of the Psocodea needs revision. In addition, there are implications for the evolution of parasitism in insects; parasitism may have evolved twice in lice or have evolved once and been subsequently lost in the Liposcelididae.
Resumo:
The diversity of the culturable microbial communities was examined in two sponge species-Pseudoceratina clavata and Rhabdastrella globostellata. Isolates were characterized by 16S rRNA gene sequencing and phylogenetic analysis. The bacterial community structures represented in both sponges were found to be similar at the phylum level by the same four phyla in this study and also at a finer scale at the species level in both Firmicutes and Alphaproteobacteria. The majority of the Alphaproteobacteria isolates were most closely related to isolates from other sponge species including alpha proteobacterium NW001 sp. and alpha proteobacterium MBIC3368. Members of the low %G + C gram-positive (phylum Firmicutes), high %G + C gram-positive (phylum Actinobacteria), and Cytophaga-Flavobacterium-Bacteroides (phylum Bacteroidetes) phyla of domain Bacteria were also represented in both sponges. In terms of culturable organisms, taxonomic diversity of the microbial community in the two sponge species displays similar structure at phylum level. Within phyla, isolates often belonged to the same genus-level monophyletic group. Community structure and taxonomic composition in the two sponge species P. clavata and Rha. globostellata share significant features with those of other sponge species including those from widely separated geographical and climatic regions of the sea.
Resumo:
Phylogenetic analysis of the ketosynthase (KS) gene sequences of marine sponge-derived Salinispora strains of actinobacteria indicated that the polyketide synthase (PKS) gene sequence most closely related to that of Salinispora was the rifamycin B synthase of Amycolatopsis mediterranei. This result was not expected from taxonomic species tree phylogenetics using 16S rRNA sequences. From the PKS sequence data generated from our sponge-derived Salinispora strains, we predicted that such strains might synthesize rifamycin-like compounds. Liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis was applied to one sponge-derived Salinispora strain to test the hypothesis of rifamycin synthesis. The analysis reported here demonstrates that this Salinispora isolate does produce compounds of the rifamycin class, including rifamycin B and rifamycin SV. A rifamycin-specific KS primer set was designed, and that primer set increased the number of rifamycin-positive strains detected by PCR screening relative to the number detectable using a conserved KS-specific set. Thus, the Salinispora group of actinobacteria represents a potential new source of rifamycins outside the genus Amycolatopsis and the first recorded source of rifamycins from marine bacteria.
Resumo:
The spermatozoon of Apus apus is typical of non-passerines in many respects. Features shared with palaeognaths and the Galloanserae are the conical acrosome, shorter than the nucleus; the presence of a proximal as well as distal centriole; the elongate midpiece with mitochondria grouped around an elongate distal centriole; and the presence of a fibrous or amorphous sheath around the principal piece of the axoneme. The perforatorium and endonuclear canal are lost in A. apus as in some other non-passerines. All non-passerines differ from palaeognaths in that the latter have a transversely ribbed fibrous sheath whereas in non-passerines it is amorphous, as in Apus, or absent. The absence of an annulus is an apomorphic but homoplastic feature of swift, psittaciform, gruiform and passerine spermatozoa. The long distal centriole, penetrating the entire midpiece, is a remarkably plesiomorphic feature of the swift spermatozoa, known elsewhere only in palaeognaths. The long centriole of Apus, if not a reversal, would be inconsistent with the former placement of the Apodiformes above the Psittaciformes from DNA-DNA hybridization. In contrast to passerines, in A. apus the microtubules in the spermatid are restricted to a transient single row encircling the cell. The form of the spermatozoon fully justifies the exclusion of swifts from the passerine family Hirundinidae.
Resumo:
Alfuy virus (ALFV) is classified as a subtype of the flavivirus Murray Valley encephalitis virus (MVEV); however, despite preliminary reports of antigenic and ecological similarities with MVEV, ALFV has not been associated with human disease. Here, it was shown that ALFV is at least 10(4)-fold less neuroinvasive than MVEV after peripheral inoculation of 3-week-old Swiss outbred mice, but ALFV demonstrates similar neurovirulence. In addition, it was shown that ALFV is partially attenuated in mice that are deficient in alpha/beta interferon responses, in contrast to MVEV which is uniformly lethal in these mice. To assess the antigenic relationship between these viruses, a panel of monoclonal antibodies was tested for the ability to bind to ALFV and MVEV in ELISA. Although the majority of monoclonal antibodies recognized both viruses, confirming their antigenic similarity, several discriminating antibodies were identified. Finally, the entire genome of the prototype strain of ALFV (MRM3929) was sequenced and phylogenetically analysed. Nucleotide (73%) and amino acid sequence (83 %) identity between ALFV and IMVEV confirmed previous reports of their close relationship. Several nucleotide and amino acid deletions and/or substitutions with putative functional significance were identified in ALFV, including the abolition of a conserved glycosylation site in the envelope protein and the deletion of the terminal dinucleotide 5'-CUOH-3' found in all other members of the genus. These findings confirm previous reports that ALFV is closely related to IMVEV, but also highlights significant antigenic, genetic and phenotypic divergence from MVEV. Accordingly, the data suggest that ALFV is a distinct species within the serogroup Japanese encephalitis virus.
Resumo:
Markov chain Monte Carlo (MCMC) is a methodology that is gaining widespread use in the phylogenetics community and is central to phylogenetic software packages such as MrBayes. An important issue for users of MCMC methods is how to select appropriate values for adjustable parameters such as the length of the Markov chain or chains, the sampling density, the proposal mechanism, and, if Metropolis-coupled MCMC is being used, the number of heated chains and their temperatures. Although some parameter settings have been examined in detail in the literature, others are frequently chosen with more regard to computational time or personal experience with other data sets. Such choices may lead to inadequate sampling of tree space or an inefficient use of computational resources. We performed a detailed study of convergence and mixing for 70 randomly selected, putatively orthologous protein sets with different sizes and taxonomic compositions. Replicated runs from multiple random starting points permit a more rigorous assessment of convergence, and we developed two novel statistics, delta and epsilon, for this purpose. Although likelihood values invariably stabilized quickly, adequate sampling of the posterior distribution of tree topologies took considerably longer. Our results suggest that multimodality is common for data sets with 30 or more taxa and that this results in slow convergence and mixing. However, we also found that the pragmatic approach of combining data from several short, replicated runs into a metachain to estimate bipartition posterior probabilities provided good approximations, and that such estimates were no worse in approximating a reference posterior distribution than those obtained using a single long run of the same length as the metachain. Precision appears to be best when heated Markov chains have low temperatures, whereas chains with high temperatures appear to sample trees with high posterior probabilities only rarely. [Bayesian phylogenetic inference; heating parameter; Markov chain Monte Carlo; replicated chains.]
Resumo:
The sperm of Caprimulgus europaeus is typical of other nonpasserines in many respects. Features shared with Paleognathae and Galloanserae are the conical acrosome, shorter than the nucleus; the presence of a perforatorium and endonuclear canal; the presence of a proximal as well as distal centriole; the elongate midpiece with mitochondria grouped around a central axis (here maximally six mitochondria in similar to 10 tiers); and the presence of a fibrous or amorphous sheath around the principal piece of the axoneme. A major (apomorphic) difference from paleognaths and galloanserans is the short distal centriole, the midpiece being penetrated for most of its length by the axoneme and for only a very short proximal portion by the centriole. Nonpasserines differ from paleognaths in that the latter have a transversely ribbed fibrous sheath, whereas in nonpasserines it is amorphous, as in Caprimulgus, or absent. The absence of an annulus is an apomorphic feature of Caprimulgus, apodiform, psittaciform, gruiform, and passerine sperm, homoplastic in at least some of these. In contrast to passerines, in Caprimulgus the cytoplasmic microtubules in the spermatid are restricted to a transient longitudinal manchette. The structure of the spermatid and spermatozoon is consistent with placement of the Caprimulgidae near the Psittacidae, but is less supportive of close proximity to the Apodidae, from DNA-DNA hybridization and some other analyses.
Resumo:
Feline immunodeficiency virus (FIV), a lentivirus, is an important pathogen of domestic cats around the world and has many similarities to human immunodeficiency virus (HIV). A characteristic of these lentiviruses is their extensive genetic diversity which has been an obstacle in the development of successful vaccines. Of the FIV genes, the envelope gene is the most variable and sequence differences in a portion of this gene have been used to define 5 FIV subtypes (A, B, C, D and E). In this study, the proviral DNA sequence of the V3-V5 region of the envelope gene was determined in blood samples from 31 FIV positive cats from 4 different regions of South Africa. Phylogenetic analysis demonstrated the presence of both subtypes A and C, with subtype A predominating. These findings contribute to the understanding of the genetic diversity of FIV