4 resultados para photonic crystal laser
em University of Queensland eSpace - Australia
Resumo:
The morphology and distribution of high-pressure metastable phases BC8 and R8, formed in monocrystalline silicon under microindentation, were identified and assessed using transmission electron microscopy nanodiffraction analysis. It was discovered that the crystal growth inside the transformation zone was stress-dependent with large crystals in its central region. The crystal size could also be increased using higher maximum indentation loads. The BC8 and R8 phases distributed unevenly across the transformation zone, with BC8 crystals mainly in the center of the zone and smaller R8 fragments in the peripheral regions. Such phase distribution was in agreement with the theoretical residual stress analysis.
Resumo:
Measuring the polarization of a single photon typically results in its destruction. We propose, demonstrate, and completely characterize a quantum nondemolition (QND) scheme for realizing such a measurement nondestructively. This scheme uses only linear optics and photodetection of ancillary modes to induce a strong nonlinearity at the single-photon level, nondeterministically. We vary this QND measurement continuously into the weak regime and use it to perform a nondestructive test of complementarity in quantum mechanics. Our scheme realizes the most advanced general measurement of a qubit to date: it is nondestructive, can be made in any basis, and with arbitrary strength.
Resumo:
We present a new method of modeling imaging of laser beams in the presence of diffraction. Our method is based on the concept of first orthogonally expanding the resultant diffraction field (that would have otherwise been obtained by the laborious application of the Huygens diffraction principle) and then representing it by an effective multimodal laser beam with different beam parameters. We show not only that the process of obtaining the new beam parameters is straightforward but also that it permits a different interpretation of the diffraction-caused focal shift in laser beams. All of the criteria that we have used to determine the minimum number of higher-order modes needed to accurately represent the diffraction field show that the mode-expansion method is numerically efficient. Finally, the characteristics of the mode-expansion method are such that it allows modeling of a vast array of diffraction problems, regardless of the characteristics of the incident laser beam, the diffracting element, or the observation plane. (C) 2005 Optical Society of America.