4 resultados para phosphate de fer lithié

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental issues due to increases in emissions of air pollutants and greenhouse gases are driving the development of clean energy delivery technologies such as fuel cells. Low temperature Proton Exchange Membrane Fuel Cells (PEMFC) use hydrogen as a fuel and their only emission is water. While significant advances have been made in recent years, a major limitation of the current technology is the cost and materials limitations of the proton conduction membrane. The proton exchange membrane performs three critical functions in the PEMFC membrane electrode assembly (MEA): (i) conduction of protons with minimal resistance from the anode (where they are generated from hydrogen) to the cathode (where they combine with oxygen and electrons, from the external circuit or load), (ii) providing electrical insulation between the anode and cathode to prevent shorting, and (iii) providing a gas impermeable barrier to prevent mixing of the fuel (hydrogen) and oxidant. The PFSA (perfluorosulphonic acid) family of membranes is currently the best developed proton conduction membrane commercially available, but these materials are limited to operation below 100oC (typically 80oC, or lower) due to the thermochemical limitations of this polymer. For both mobile and stationary applications, fuel cell companies require more durable, cost effective membrane technologies capable of delivering enhanced performance at higher temperatures (typically 120oC, or higher. This is driving research into a wide range of novel organic and inorganic materials with the potential to be good proton conductors and form coherent membranes. There are several research efforts recently reported in the literature employing inorganic nanomaterials. These include functionalised silica phosphates [1,2], fullerene [3] titania phosphates [4], zirconium pyrophosphate [5]. This work addresses the functionalisation of titania particles with phosphoric acid. Proton conductivity measurements are given together with structural properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Potassium (K) deficiency (KD) and/or hypokalemia have been associated with disturbances of phosphate metabolism The purpose of the present study was to determine the cellular mechanisms that mediate the impairment of renal proximal tubular Na/Pi cotransport in a model of K deficiency in the rat. Methods. K deficiency in the rat was achieved by feeding rats a K-deficient diet for seven days. which resulted in a marked decrease in serum and tissue K content. Results. K deficiency resulted in a marked increase in urinary Pi excretion and a decrease in the V-max of brush-border membrane (BBM) Na/Pi cotransport activity (1943 95 in control vs. 1183 +/- 99 pmol/5 sec/mg BBM protein in K deficiency. P < 0.02). Surprisingly. the decrease in Na/Pi cotransport activity was associated with increases in the abundance of type I (NaPi-1). and type II (NaPi-2) and type III (Glvr-1) Na/Pi protein. The decrease in Na/Pi transport was associated with significant alterations in BBM lipid composition, including increases in sphingomyelin. glucosylceramide. and ganglioside GM, content and a decrease in BBM lipid fluidity. Inhibition of glucosylceramide synthesis resulted in increases in BBM Na/Pi cotransport activity in control and K-deficient rats. The resultant Na/Pi cotransport activity in K-deficit nt rats was the same as in control rats (1148 +/- 52 in control + PDMP vs. 11.52 +/- 61 pmol/5 sec/mg BBM protein in K deficiency + PDMP). These changes in transport activity occurred independent of further changes in BBM NaPi-2 protein or renal cortical NaPi-2 mRNA abundance. Conclusion. K deficiency in the rat causes inhibition of renal Na/Pi cotransport activity by post-translational mechanisms that are mediated in part through alterations in glucosylceramide content and membrane lipid dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A glasshouse study was undertaken to determine if the zeolite mineral clinoptilolite from an Australian deposit in combination with rock phosphate (RP) could significantly enhance the uptake of P by sunflowers. The zeolite/RP combination was intended to act as an exchange-fertiliser, with Ca2+ exchanging onto the zeolite in response to plant uptake of nutrient cations (NH4+ or K) enhancing the dissolution of the RP. A reactive RP (Sechura) and a relatively non-reactive RP (Duchess) were examined. Zeolite was used in Ca2+-, K+- and NH4+-saturated forms at ratios of 3.5:1 and 7:1 with RP; Ca2+-zeolite was considered the control, with exchange-induced dissolution possible from K+-and NH4+-zeolite, The zeolite/RP mixture was applied as a vertical band adjacent to the sunflower seedling. In addition, N was supplied as urea in an effort to determine if RP dissolution resulted from H+ release by nitrification. Phosphorus supply from the zeolite/RP system was compared with an available P source (KH2PO4). The experiment clearly demonstrated greatly enhanced plant uptake of P from RP when applied in combination with NH4-zeolite, though the P uptake was lower than that from the soluble P source. The zeolite/RP interaction was much more effective with the reactive R-P than the non-reactive material, Within the NH4+-zeolite/RP band, root proliferation was greatly increased, as would be expected in an exchange-fertiliser system. The K+-zeolite system did not produce a significantly greater yield than the Ca2+-zeolite control, probably because adequate K+ supply from the basal application reduced uptake within the zeolite/RP band, thus reducing the extent of exchange-induced dissolution. Nevertheless, increased root proliferation within the band was observed, implying that exchange-induced dissolution may also be possible from this system. The zeolite/RP system offers the considerable advantage of P release in response to plant demand and is unique in this regard. (C) 2002 Elsevier Science B.V. All rights reserved.