4 resultados para phenyl-pyrazolic
em University of Queensland eSpace - Australia
Resumo:
The use of phenyldithioacetic acid (PDA) in homopolymerizations of styrene or methyl acrylate produced only a small fraction of chains with dithioester end groups. The polymerizations using 1-phenylentyl phenyldithioacetate (PEPDTA) and PDA in the same reaction showed that PDA had little or no influence on the rate or molecular weight distribution even when a 1:1 ratio is used. The mechanistic pathway for the polymerizations in the presence of PDA seemed to be different for each monomer. Styrene favors addition of styrene to PDA via a Markovnikov type addition to form a reactive RAFT agent. The polymer was shown by double detection SEC to contain dithioester end groups over the whole distribution. This polymer was then used in a chain extension experiment and the M-n was close to theory. A unique feature of this work was that PDA could be used to form a RAFT agent in situ by heating a mixture of styrene and PDA for 24 h at 70 degrees C and then polymerizing in the presence of AIBN to give a linear increase in Mn and low values of PDI (< 1.14). In the case of the polymerization of MA with PDA, the mechanism was proposed to be via degradative chain transfer. (c) 2005 Wiley Periodicals, Inc.
Resumo:
1,3-Phenyl shifts interconvert imidoylketenes 1 and alpha-oxoketenimines 2 and, likewise, alpha-oxoketenes 3 automerize by this 1,3-shift. These rearrangements usually take place in the gas phase under conditions of. ash vacuum thermolysis. Energy profiles calculated at the B3LYP/6-31G(d, p) and B3LYP/6311 + G(3df,2p)//B3LYP/6-31G(d,p) levels demonstrate that electron donating substituents ( D) in the migrating phenyl group and electron withdrawing ones ( W) in the non-migrating phenyl group, can stabilise the transition states TS1 and TS2 to the extent that activation barriers of ca. 100 kJ mol(-1) or less are obtained; i.e. enough to make these reactions potentially observable in solution at ordinary temperatures. The calculated transition state energies Delta G(TS1) show an excellent correlation with the Hammett constants sigma(p)(W) and sigma(p) +(D).
Resumo:
Dibenzoylketene 5 undergoes degenerate 1,3-shifts of the phenyl group between acyl and ketene carbon atoms, thus interconverting it with 6 and 7. This 1,3-shift takes place in the gas phase under flash vacuum thermolysis (FVT) conditions, but not in solution at 110-145 degrees C. Imidoyl(benzoyl)ketene 13 undergoes degenerate 1,3-shift of the phenyl group on FVT, thus interconverting it with 14, but the ketenimine isomer 15 is not formed, and none of these shifts take place in the solid state at 250 degrees C. Imidoyl(p-toluoyl)ketene 21 undergoes a 1,3-p-tolyl shift, interconverting it with ketene 22 but not with ketenimine 23. The imidoyl(p-toluoyl)ketene rotamer 25 cyclizes to 4-toluoyloxyquinoline 28 and 4-quinolone 29. The cyclization of imidoyl(benzoyl)ketene 13 to 4-benzoyloxyquinoline 18, and of 25 to 28 involves 1,3-C-to-O shifts of benzoyl (toluoyl) groups. Calculations of the transition states for the transformations at the B3LYP/6-31G** level of theory are in agreement with the observed reaction preferences.