6 resultados para periapical lesion
em University of Queensland eSpace - Australia
Resumo:
Traditionally, long-term calcium hydroxide dressings have been recommended for the conservative management of large periapical lesions. However, calcium hydroxide therapy has some disadvantages such as variability of treatment time, difficulties with patient follow-up and prolonged treatment periods that increase the risk of root canal contamination via microleakage and crown fractures. This paper reports the healing of large periapical lesions following conservative non-surgical treatment with calcium hydroxide dressings.
Resumo:
The inheritance of resistance to root-lesion nematode was investigated in five synthetic hexaploid wheat lines and two bread wheat lines using a half-diallel design of F-1 and F-2 crosses. The combining ability of resistance genes in the synthetic hexaploid wheat lines was compared with the performance of the bread wheat line 'GS50a', the source of resistance to Pratylenchus thornei used in Australian wheat breeding programmes. Replicated glasshouse trials identified P. thornei resistance as polygenic and additive in gene action. General combining ability (GCA) of the parents was more important than specific combining ability (SCA) effects in the inheritance of P. thornei resistance in both F-1 and F-2 populations. The synthetic hexaploid wheat line 'CPI133872' was identified as the best general combiner, however, all five synthetic hexaploid wheat lines possessed better GCA than 'GS50a'. The synthetic hexaploid wheat lines contain novel sources of P. thornei resistance that will provide alternative and more effective sources of resistance to be utilized in wheat breeding programmes.
Resumo:
Purpose: The purpose of this longitudinal study was to determine factors associated with mutans streptococci (MS) infection and development of caries lesions in a group of children 21 to 72 months old. Methods: The 63 caries-free children, recruited since birth, were divided into: (1) a study group of 24 children who were colonized with MS; and (2) a control group of 39 children without MS. The children were recalled every 3 months for approximately 24 months, and their social, medical, and dental histories were updated. At each recall, the teeth were checked for presence or absence of plaque, enamel hypoplasia, and caries lesions, and their MS status was assessed using a commercial test kit. Results: MS infection was associated with: (1) visible plaque (P < .01); (2) enamel hypoplasia (P < .05); (3) commencement of tooth-brushing after 12 months of age (P < .05); (4) lack of parental assistance with tooth-brushing (P < .025); and (5) increased hours of child care/school (P < .05). Four children (20%) were colonized at an age range of 21 to 36 months, 9 (45%) at 37 to 48 months, and 7 (35%) at 49 to 72 months (P < .001). Eight children who developed caries lesions: (1) had more hypoplastic teeth (P < .001); (2) ate sugar-containing snacks (P < .05); and (3) did not brush regularly with chlorhexidine gel (P < .01) compared to those who remained free of caries lesions. Conclusions: Lack of oral hygiene, consumption of sugar-containing snacks, and enamel hypoplasia are significant factors for both MS infection and caries lesion initiation.