11 resultados para pectate lyase

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transgenic tobacco plants expressing a phenylalanine ammonia-lyase cDNA (ShPAL), isolated from Stylosanthes humilis, under the control of the 35S promoter of the cauliflower mosaic virus were produced to test the effect of high level PAL expression on disease resistance. The transgenic plants showed up to eightfold PAL activity and were slowed in growth and flowering relative to non-transgenic controls which have segregated out the transgene. The expression of the ShPAL transgene and elevated PAL levels were correlated and stably inherited. In T-1 and T-2 tobacco plants with increased PAL activity, lesion expansion was significantly reduced by up to 55% on stems inoculated with the Oomycete pathogen Phytophthora parasitica pv. nicotianae, Lesion area was significantly reduced by up to 50% on leaves inoculated with the fungal pathogen Cercospora nicotianae. This study provides further evidence that PAL has a role in plant defence. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminium (At) tolerance in plants may be conferred by reduced binding of Al in the cell wall through low root cation exchange capacity (CEC) or by organic acid exudation. Root CEC is related to the degree of esterification (DE) of pectin in the cell wall, and pectin hydrolysis plays a role in cell expansion. Therefore, it was hypothesised that Al-tolerant plants with a low root CEC maintain pectin hydrolysis in the presence of Al, allowing cell expansion to continue. Irrespective of the DE, binding of Al to pectin reduced the enzymatic hydrolysis of Al-pectin gels by polygalacturonase (E.C. 3.2.1.15). Pectin gels with calcium (Ca) were slightly hydrolysed by polygalacturonase. It was concluded, therefore, that Al tolerance conferred by low root CEC is not mediated by the ability to maintain pectin hydrolysis. Citrate and malate, but not acetate, effectively dissolved Al-pectate gel and led to hydrolysis of the dissolved pectin by polygalacturonase. The organic acids did not dissolve Ca-pectate, nor did they increase pectin hydrolysis by polygalacturonase. It was concluded that exudation of some organic acids can remove Al bound to pectin and this could alleviate toxicity, constituting a tolerance mechanism. (C) 2003 Editions scientitiques et medicales Elsevier SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A genomic region containing the fatty acid biosynthetic (fab) genes was isolated from the sugarcane leaf-scald pathogen Xanthomonasalbilineans. The order and predicted products of fabG (beta -ketoacyl reductase), acpP (acyl carrier protein), fabF(ketoacyl synthase II) and downstream genes in X. albilineans are very similar to those in Escherichia coli, with one exception. Sequence analysis, confirmed by insertional knockout and specific substrate feeding experiments, shows that the position occupied by pabC (encoding aminodeoxychorismate lyase) in other bacteria is occupied instead by pabB (encoding aminodeoxychorismate synthase component I) in X. albilineans. Downstream of pabB, X. albilineans resumes the arrangement common to characterized Gram-negative bacteria, with three transcriptionally coupled genes, encoding an ORF340 protein of undefined function, thymidylate kinase and delta' subunit of DNA polymerase III holoenzyme (HolB). Different species may obtain a common advantage from coordinated regulation of the same biosynthetic pathways using different genes in this region. (C) 2000 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND. Alterations of important protein pathways, including loss of prostate secretory granules, and disruption of the prostatic secretory pathway have been identified as early events in malignancy. In this study, proteomics was used to map the differences in protein expression between normal and malignant prostate tissues and to identify and analyze differentially expressed proteins in human prostate tissue with particular regard to the proteins lost in malignancy. METHODS. Small quantities of normal and malignant prostate tissue were taken fresh from 34 radical prostatectomy cases. After histological examination, proteins were solubilized from selected tissues and separated using two-dimensional electrophoresis. Using image analysis, the proteome of normal and malignant tissues were mapped and differentially expressed proteins (present in normal and absent in malignant tissue) were identified and subsequently analyzed using peptide mass finger printing and N-terminal sequencing. Western blotting and immunohistochemistry were performed to examine expression profiles and tissue localization of candidate proteins. RESULTS. Comparison of protein maps of normal and malignant prostate were used to identify 20 proteins which were lost in malignant transformation, including prostate specific antigen (PSA), alpha-l antichymotrypsin (ACT), haptoglobin, and lactoylglutathione lyase. Three of the 20 had not previously been reported in human prostate tissue (Ubiquitin-like NEDD8, calponin, and a follistatin-related protein). Western blotting confirmed differences in the expression profiles of NEDD8 and calponin, and immunohistochemistry demonstrated differences in the cellular localization of these two proteins in normal and malignant prostate glands. CONCLUSIONS. The expression of NEDD8, calponin, and the follistatin-related protein in normal prostate tissues is a novel finding and the role of these important functional proteins in normal prostate and their loss or reduced expression in prostate malignancy warrants further investigations. (C) 2002 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uptake of nutrients and water depends on the growth of roots through elongation of individual cells near the. root tip. Many of the numerous components of Type I primary cell walls, those of dicotyledons and monocotyledons other than grasses (Poaceae), have been determined, and many hypotheses have been proposed for the control of cell expansion. This important aspect of plant growth still needs elucidation, however. A model is proposed in which pectin, which occurs as a calcium (Ca) pectate gel between the load-bearing cellulose microfibrils and xyloglucan (XG) chains, controls the rate at which cells expand. It is considered that the increasing tension generated by the expanding cell is transmitted to interlocked XG chains and cellulose microfibrils. The resulting deformation of the embedded Ca pectate gel elicits the excretion of protons from the cytoplasm, possibly via compounds such as cell wall-associated kinases, that weakens the Ca pectate gel, permitting slippage of XG molecules through the action of expansin. Further slippage is prevented by deformation of the pectic gel, proton diffusion, and the transfer of residual tension to adjacent XG chains. Evidence for this model is based on the effects of pH, Ca, and aluminum (Al) on root elongation and on the reactions of these cations with Ca pectate. This model allows for genetic selection of plants and adaptation of individual plants to root environmental conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A metabolic flux model was developed for Streptococcus zooepidemicus to compare the metabolism of glucose and maltose during aerobic batch cultivation. Lactic acid was the main product of glucose metabolism whereas acetic acid was the main product of maltose metabolism. This difference was chiefly attributed to the two-fold higher flux through NADH oxidase in maltose-grown cells that enabled the ATP generation rate to remain high despite a slower maltose consumption rate. The two-fold higher flux was matched by a two-fold increase in NADH oxidase activity, 2.53 +/- 0.1 mumol NADH min(-1) mg(-1) protein on maltose versus 1.07 +/- 0.04 Rmol NADH min(-1) mg(-1) protein on glucose, indicating that NADH oxidase activity is regulated by the energy status of the cell. Surprisingly, the energy status of the cell had little impact on hyaluronic acid (HA) yield and molecular weight. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing loss of conventional fungicides due to pathogen resistance and general unacceptability in terms of public and environmental risk have favoured the introduction of integrated pest management (IPM) programmes. Induction of natural disease resistance (NDR) in harvested horticultural crops using physical, biological and/or chemical elicitors has received increasing attention over recent years, it being considered a preferred strategy for disease management. This article reviews the enhancement of constitutive and inducible antifungal compounds and suppression of postharvest diseases through using elicitors. The effect of timing of pre- and/or postharvest elicitor treatment and environment on the degree of elicitation and the potential for inducing local acquired resistance, systemic acquired resistance and/or induced systemic resistance to reduce postharvest disease is discussed. The review highlights that more applied and basic research is required to understand the role that induced NDR can play in achieving practical suppression of postharvest diseases as part of an IPM approach. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modification of cell wall components such as cellulose, hemicellulose and pectin plays an important role in cell expansion. Cell expansion is known to be diminished by cations but it is unknown if this results from cations reacting with pectin or other cell wall components. Autolysis of cell wall material purified from bean root (Phaseolus vulgaris L.) occurred optimally at pH 5.0 and released mainly neutral sugars but very little uronic acid. Autolytic release of neutral sugars and uronic acid was decreased when cell wall material was loaded with Ca, Cu, Sr, Zn, Al or La cations. Results were also extended to a metal-pectate model system, which behaved similarly to cell walls and these cations also inhibited the enzymatic degradation by added polygalacturonase (EC 3.2.1.15). The extent of sugar release from cation-loaded cell wall material and pectate gels was related to the degree of cation saturation of the substrate, but not to the type of cation. The binding strength of the cations was assessed by their influence on the buffer capacity of the cell wall and pectate. The strongly bound cations (Cu, Al or La) resulted in higher cation saturation of the substrate and decreased enzymatic degradability than the weakly held cations (Ca, Sr and Zn). The results indicate that the junction zones between pectin molecules can peel open with weakly held cations, allowing polygalacturonase to cleave the hairy region of pectin, while strongly bound cations or high concentrations of cations force the junction zone closed, minimising enzymatic attack on the pectin backbone. (C) 2004 Elsevier SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanism of pectin gelation depends on the degree of methoxylation. High methoxyl pectin gels due to hydrophobic interactions and hydrogen bonding between pectin molecules. Low methoxyl pectin forms gels in the presence of di- and polyvalent cations which cross link and neutralise the negative charges of the pectin molecule. Monovalent cations normally do not lead to gel formation with high methoxyl pectin solutions free of divalent cations, especially Ca. The present study found that alkali (NaOH or KOH) added to high methoxyl pectin leads to gel formation in a concentration-depended manner. It was also found that monovalent cations (Na and K) induce gelation of low methoxyl pectin and the time required for gel formation (setting time) depends on the cation concentration. The results indicate that a combined char-e neutralisation and ionic strength effect is responsible for the monovalent cation-induced gelation of pectin. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Caustis blakei produces an intriguing morphological adaptation by inducing dauciform roots in response to phosphorus (P) deficiency. We tested the hypothesis that these hairy, swollen lateral roots play a similar role to cluster roots in the exudation of organic chelators and ectoenzymes known to aid the chemical mobilization of sparingly available soil nutrients, such as P. Dauciform-root development and exudate composition (carboxylates and acid phosphatase activity) were analysed in C. blakei plants grown in nutrient solution under P-starved conditions. The distribution of dauciform roots in the field was determined in relation to soil profile depth and matrix. The percentage of dauciform roots of the entire root mass was greatest at the lowest P concentration ([P]) in solution, and was suppressed with increasing solution [P], while in the field dauciform roots were predominately located in the upper soil horizons, and decreased with increasing soil depth. Citrate was the major carboxylate released in an exudative burst from mature dauciform roots, which also produced elevated levels of acid phosphatase activity. Malonate was the dominant internal carboxylate present, with the highest concentration in young dauciform roots. The high concentration of carboxylates and phosphatases released from dauciform roots, combined with their prolific distribution in the organic surface layer of nutrient-impoverished soils, provides an ecophysiological advantage for enhancing nutrient acquisition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grevillea 'Crimson Yul-lo' inflorescences have cut flower potential, but their vase life is short. End of vase life is characterized by early wilting. The possibility of physiologically mediated stem end blockage was investigated. Hydraulic conductance of 2 cm long stem end segments declined rapidly and remained lower throughout vase life than that of 2 cm long stem segments from immediately above. Recutting daily to remove basal 2 cm stem ends increased solution uptake, delayed declines in inflorescence water potential and water content, and improved inflorescence vase life. S-carvone is a potential inhibitor of wound related suberin formation, via inhibition of phenylalanine ammonia-lyase. Vase solution treatments with S-carvone (0.318 and 0.636 mM) delayed the decline in hydraulic conductance of basal 2 cm long stem end segments and decreases in vase solution uptake and relative fresh weight of cut stems, and extended vase life. Treatments with the catechol oxidase inhibitor 4-hexylresorcinol (2.5-10 mM) also delayed stem end blockage. These findings suggest that stem end blockage in cut G. 'Crimson Yul-lo' stems is physiologically mediated. (C) 2006 Elsevier B.V. All rights reserved.