35 resultados para pattern matching protocols
em University of Queensland eSpace - Australia
Resumo:
This paper describes algorithms that can identify patterns of brain structure and function associated with Alzheimer's disease, schizophrenia, normal aging, and abnormal brain development based on imaging data collected in large human populations. Extraordinary information can be discovered with these techniques: dynamic brain maps reveal how the brain grows in childhood, how it changes in disease, and how it responds to medication. Genetic brain maps can reveal genetic influences on brain structure, shedding light on the nature-nurture debate, and the mechanisms underlying inherited neurobehavioral disorders. Recently, we created time-lapse movies of brain structure for a variety of diseases. These identify complex, shifting patterns of brain structural deficits, revealing where, and at what rate, the path of brain deterioration in illness deviates from normal. Statistical criteria can then identify situations in which these changes are abnormally accelerated, or when medication or other interventions slow them. In this paper, we focus on describing our approaches to map structural changes in the cortex. These methods have already been used to reveal the profile of brain anomalies in studies of dementia, epilepsy, depression, childhood and adult-onset schizophrenia, bipolar disorder, attention-deficit/ hyperactivity disorder, fetal alcohol syndrome, Tourette syndrome, Williams syndrome, and in methamphetamine abusers. Specifically, we describe an image analysis pipeline known as cortical pattern matching that helps compare and pool cortical data over time and across subjects. Statistics are then defined to identify brain structural differences between groups, including localized alterations in cortical thickness, gray matter density (GMD), and asymmetries in cortical organization. Subtle features, not seen in individual brain scans, often emerge when population-based brain data are averaged in this way. Illustrative examples are presented to show the profound effects of development and various diseases on the human cortex. Dynamically spreading waves of gray matter loss are tracked in dementia and schizophrenia, and these sequences are related to normally occurring changes in healthy subjects of various ages. (C) 2004 Published by Elsevier Inc.
Resumo:
This paper reports on the development of an artificial neural network (ANN) method to detect laminar defects following the pattern matching approach utilizing dynamic measurement. Although structural health monitoring (SHM) using ANN has attracted much attention in the last decade, the problem of how to select the optimal class of ANN models has not been investigated in great depth. It turns out that the lack of a rigorous ANN design methodology is one of the main reasons for the delay in the successful application of the promising technique in SHM. In this paper, a Bayesian method is applied in the selection of the optimal class of ANN models for a given set of input/target training data. The ANN design method is demonstrated for the case of the detection and characterisation of laminar defects in carbon fibre-reinforced beams using flexural vibration data for beams with and without non-symmetric delamination damage.
Resumo:
We consider the statistical problem of catalogue matching from a machine learning perspective with the goal of producing probabilistic outputs, and using all available information. A framework is provided that unifies two existing approaches to producing probabilistic outputs in the literature, one based on combining distribution estimates and the other based on combining probabilistic classifiers. We apply both of these to the problem of matching the HI Parkes All Sky Survey radio catalogue with large positional uncertainties to the much denser SuperCOSMOS catalogue with much smaller positional uncertainties. We demonstrate the utility of probabilistic outputs by a controllable completeness and efficiency trade-off and by identifying objects that have high probability of being rare. Finally, possible biasing effects in the output of these classifiers are also highlighted and discussed.
Resumo:
This paper presents a new relative measure of signal complexity, referred to here as relative structural complexity, which is based on the matching pursuit (MP) decomposition. By relative, we refer to the fact that this new measure is highly dependent on the decomposition dictionary used by MP. The structural part of the definition points to the fact that this new measure is related to the structure, or composition, of the signal under analysis. After a formal definition, the proposed relative structural complexity measure is used in the analysis of newborn EEG. To do this, firstly, a time-frequency (TF) decomposition dictionary is specifically designed to compactly represent the newborn EEG seizure state using MP. We then show, through the analysis of synthetic and real newborn EEG data, that the relative structural complexity measure can indicate changes in EEG structure as it transitions between the two EEG states; namely seizure and background (non-seizure).
Resumo:
In a recent paper Meyer and Yeoman [Phys. Rev. Lett. 79, 2650 (1997)] have shown that the resonance fluorescence from two atoms placed in a cavity and driven by an incoherent field can produce an interference pattern with a dark center. We study the fluorescence from two coherently driven atoms in free space and show that this system can also produce an interference pattern with a dark center. This happens when the atoms are in nonequivalent positions in the driving: field, i.e., the atoms experience different intensities and phases of the driving field. We discuss the role of the interatomic interactions in this process and find that the interference pattern with a dark center results from the participation of the antisymmetric state in the dynamics of the driven two-atom system.
Resumo:
We study the resonance fluorescence from two interacting atoms driven by a squeezed vacuum field and show that this system produces an interference pattern with a dark center. We discuss the role of the interatomic interactions in this process and find that the interference pattern results from an unequal population of the symmetric and antisymmetric states of the two-atom system. We also identify intrinsically nonclassical effects versus classical squeezed field effects, (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
In the light of Project MATCH, is it reasonable to accept the null hypothesis that there are no clinically signi® cant matching effects between patient characteristics and cognitive± behaviour therapy (CBT), motivational enhancement therapy (MET) and Twelve-Step facilitation therapy (TSF)? The Project MATCH investigators considered the null hypothesis but preferred the alternative hypothesis that further analysis may reveal combinations of patient and therapist characteristics that show more substantial matching effects than any of the variables that they have examined to date.1
Resumo:
The effects on estrus and fertility of 3 estrus synchronization protocols were studied in Brahman beef heifers. In Treatment 1 (PGF protocol; n=234), heifers received 7.5 mg, im prostianol on Day 0 and were inseminated after observed estrus until Day 5. Treatment 2 (10-d NOR protocol; n=220) consisted of norgestomet (NOR; 3 mg, sc implant and 3 mg, im) and estradiol valerate (5 mg, im) treatment on Day -10, NOR implant removal and 400 IU, im PMSG on Day 0, and AI after observed estrus through to Day 5. Treatment 3 (14-d NOR+PGF protocol; n=168) constituted a NOR implant (3 mg, sc) on Day -14, NOR implant removal on Day 0, PGF on Day 16, and AI after observed estrus through to Day 21. All heifers were examined for return to estrus at the next cycle and inseminated after observed estrus. The heifers were then exposed to bulls for at least 21 d. During the period of estrus observation (5 d) after treatment, those heifers treated with the PGF protocol had a lower (P
Resumo:
Dual-energy X-ray absorptiometry (DXA) is a widely used method for measuring bone mineral in the growing skeleton. Because scan analysis in children offers a number of challenges, we compared DXA results using six analysis methods at the total proximal femur (PF) and five methods at the femoral neck (FN), In total we assessed 50 scans (25 boys, 25 girls) from two separate studies for cross-sectional differences in bone area, bone mineral content (BMC), and areal bone mineral density (aBMD) and for percentage change over the short term (8 months) and long term (7 years). At the proximal femur for the short-term longitudinal analysis, there was an approximate 3.5% greater change in bone area and BMC when the global region of interest (ROI) was allowed to increase in size between years as compared with when the global ROI was held constant. Trend analysis showed a significant (p < 0.05) difference between scan analysis methods for bone area and BMC across 7 years. At the femoral neck, cross-sectional analysis using a narrower (from default) ROI, without change in location, resulted in a 12.9 and 12.6% smaller bone area and BMC, respectively (both p < 0.001), Changes in FN area and BMC over 8 months were significantly greater (2.3 %, p < 0.05) using a narrower FN rather than the default ROI, Similarly, the 7-year longitudinal data revealed that differences between scan analysis methods were greatest when the narrower FN ROI was maintained across all years (p < 0.001), For aBMD there were no significant differences in group means between analysis methods at either the PF or FN, Our findings show the need to standardize the analysis of proximal femur DXA scans in growing children.
Resumo:
Incubation temperature influences embryonic development and the morphology of resultant hatchlings in many species of turtle but few studies have addressed its effect on oxygen consumption and total embryonic energy expenditure. Eggs of the Australian broad-shelled river turtle, Chelodina expansa, were incubated at constant temperatures of 24 degrees C and 28 degrees C to determine the effect of temperature on oxygen consumption, embryonic energy expenditure and hatchling morphology. All embryos at both incubation temperatures experienced a period of developmental diapause immediately after oviposition. Once this initial diapause was broken, embryos underwent a further period of developmental arrest when the embryo was still very small and had minimal oxygen consumption (
Resumo:
Background: Concerns exist regarding the effect of radiation dose from paediatric pelvic CT scans and the potential later risk of radiation-induced neoplasm and teratogenic outcomes in these patients. Objective: To assess the diagnostic quality of CT images of the paediatric pelvis using either reduced mAs or increased pitch compared with standard settings. Materials and methods: A prospective study of pelvic CT scans of 105 paediatric patients was performed using one of three protocols: (1) 31 at a standard protocol of 200 mA with rotation time of 0.75 s at 120 kVp and a pitch factor approximating 1.4; (2) 31 at increased pitch factor approaching 2 and 200 mA; and (3) 43 at a reduced setting of 100 mA and a pitch factor of 1.4. All other settings remained the same in all three groups. Image quality was assessed by radiologists blinded to the protocol used in each scan. Results: No significant difference was found between the quality of images acquired at standard settings and those acquired at half the standard mAs. The use of increased pitch factor resulted in a higher proportion of poor images. Conclusions: Images acquired at 120 kVp using 75 mAs are equivalent in diagnostic quality to those acquired at 150 mAs. Reduced settings can provide useful imaging of the paediatric pelvis and should be considered as a standard protocol in these situations.
Resumo:
An assessment of the changes in the distribution and extent of mangroves within Moreton Bay, southeast Queensland, Australia, was carried out. Two assessment methods were evaluated: spatial and temporal pattern metrics analysis, and change detection analysis. Currently, about 15,000 ha of mangroves are present in Moreton Bay. These mangroves are important ecosystems, but are subject to disturbance from a number of sources. Over the past 25 years, there has been a loss of more than 3800 ha, as a result of natural losses and mangrove clearing (e.g. for urban and industrial development, agriculture and aquaculture). However, areas of new mangroves have become established over the same time period, offsetting these losses to create a net loss of about 200 ha. These new mangroves have mainly appeared in the southern bay region and the bay islands, particularly on the landward edge of existing mangroves. In addition, spatial patterns and species composition of mangrove patches have changed. The pattern metrics analysis provided an overview of mangrove distribution and change in the form of single metric values, while the change detection analysis gave a more detailed and spatially explicit description of change. An analysis of the effects of spatial scales on the pattern metrics indicated that they were relatively insensitive to scale at spatial resolutions less than 50 m, but that most metrics became sensitive at coarser resolutions, a finding which has implications for mapping of mangroves based on remotely sensed data. (C) 2003 Elsevier Science B.V. All rights reserved.