8 resultados para passivation

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strong photoluminescent emission has been obtained from 3 nm PbS nanocrystals in aqueous colloidal solution, following treatment with CdS precursors. The observed emission can extend across the entire visible spectrum and usually includes a peak near 1.95 eV. We show that much of the visible emission results from absorption by higher-lying excited states above 3.0 eV with subsequent relaxation to and emission from states lying above the observed band-edge of the PbS nanocrystals. The fluorescent lifetimes for this emission are in the nanosecond regime, characteristic of exciton recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface passivation of PbS nanocrystals (NC), resulting in strong photoluminescence, can be achieved by the introduction of CdS precursors. The role of CdS in the surface passivation of PbS NCs is uncertain, as the crystalline structure of CdS and PbS are different, which should impede effective epitaxial overgrowth. Absorption spectroscopy is used to show that the CdS precursors strongly interact with the PbS NC surface. Electron microscopy reveals that the introduction of CdS precursors results in an increased particle size, consistent with overcoating. However, we also find the process to be highly non-uniform. Nevertheless, evidence for epitaxial growth is found, suggesting that effective surface passivation may be possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effective surface passivation of lead sulfide (PbS) nanocrystals (NCs) in an aqueous colloidal solution has been achieved following treatment with CdS precursors. The resultant photoluminescent emission displays two distinct components, one originating from the absorption band edge and the other from above the absorption band edge. We show that both of these components are strongly polarized but display distinctly different behaviours. The polarization arising from the band edge shows little dependence on the excitation energy while the polarization of the above-band-edge component is strongly dependent on the excitation energy. In addition, time-resolved polarization spectroscopy reveals that the above-band-edge polarization is restricted to the first couple of nanoseconds, while the band edge polarization is nearly constant over hundreds of nanoseconds. We recognize an incompatibility between the two different polarization behaviours, which enables us to identify two distinct types of surface-passivated PbS NC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the results of an electrochemical study of the anodic characteristics of arsenopyrite in strongly alkaline solutions and of the cathodic reduction of ferrate( VI) and of dissolved oxygen at an arsenopyrite surface at potentials which are relevant to the oxidation reactions. Cyclic voltammetry at both arsenopyrite disc and arsenopyrite disc/platinum ring electrodes has shown that arsenic(III) is the main product of the anodic process at potentials in the region of the rest potential during oxidation by either ferrate( VI) or oxygen. Evidence for partial passivation of both the anodic and cathodic reactions has been obtained from potentiostatic current - time transients. The initial stage of oxidation by ferrate( VI) has been shown to be mass-transport controlled and this is also true of the oxidation by oxygen in dilute solutions of sodium hydroxide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cathodic and anodic characteristics of freshly polished and pre-reduced UNS S32550 (ASTM A479) super duplex stainless steel in a filtered and conductivity-adjusted seawater have been investigated under controlled flow conditions. A rotating cylinder electrode was used together with both steady and non-steady-state voltammetry and a potential step current transient technique to investigate the electrode reactions in the fully characterized electrolyte. Both oxygen reduction and hydrogen evolution were highly irreversible and the material exhibited excellent passivation and repassivation kinetics. Relative corrosion rates were derived and the corrosion mechanism of the alloy was found to be completely independent of the mass-transfer effects, which can contribute to flow-induced corrosion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An investigation was carried out into the galvanic corrosion of magnesium alloy AZ91D in contact with zinc, aluminium alloy A380 and 4150 steel. Specially designed test panels were used to measure galvanic currents under salt spray conditions. It was found that the distributions of the galvanic current densities on AZ91D and on the cathodes were different. An insulating spacer between the AZ91D anode and the cathodes could not eliminate galvanic corrosion. Steel was the worst cathode and aluminium the least aggressive to AZ91D. Corrosion products from the anode and cathodes appeared to be able to affect the galvanic corrosion process through an alkalisation, passivation, poisoning effect or shortcut effect. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple and effective method for purifying photoluminescent water-soluble surface passivated PbS nanocrystals has been developed. Centrifuging at high speeds removes PbS nanocrystals that exhibit strong red band edge photoluminescence from an original solution containing multiple nanocrystalline species with broad photoluminescence spectra. The ability to purify the PbS nanocrystals allowed two-photon photoluminescence spectroscopy to be performed on water-soluble PbS nanocrystals and be attributed to band edge recombination. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report that high quality PbS nanocrystals, synthesized in the strong quantum confinement regime, have quantum yields as high as 70% at room temperature. We use a combination of modelling and photoluminescence up-conversion to show that we obtain a nearly monodisperse size distribution. Nevertheless, the emission displays a large nonresonant Stokes shift. The magnitude of the Stokes shift is found to be directly proportional to the degree of quantum confinement, from which we establish that the emission results from the recombination of one quantum confined charge carrier with one localized or surface-trapped charge carrier. Furthermore, the surface state energy is found to lie outside the bulk bandgap so that surface-related emission only commences for strongly quantum confined nanocrystals, thus highlighting a regime where improved surface passivation becomes necessary.