67 resultados para parasitoid of spider
em University of Queensland eSpace - Australia
Resumo:
The most abundant natural enemies found in Cambodian rice field are spiders, mostly Araneus inustus and Pardosa pseudoannulata. These two hunting and wolf spider, respectively, are believed to actively contribute to brown planthopper (BPH) population control. However, how much each species attacks prey in Cambodian field condition is unknown. We conducted field experiments in Cambodia during the wet season at two locations, a famner's fields at Takeo and at CARDI, using both field cages and natural conditions. Cages were sprayed with insecticide to remove all pre-existing insects in the cages and then washed after 10 days to reduce insecticide residue. Results confirmed BPH inside the cage were killed by the insecticide. A known BPH population was reared inside the cages starting with 3 pairs of adults. Temporary cages were removed after counting second instar BPH and permanent cages were left in place. Spiders were released into the cages for 15 days. In permanent cages either two individual A. inustus or P. pseudoannulata were allowed to feed on BPH prey. Both spider species have the same killing ability in dense prey populations, but predation is higher for Pardosa at low prey density. In uncaged field environments (where more than just BPH prey are available) with a spider/BPH ratio 1:3 to 1:11 BPH mortality was 78–91%. Within 15 days in permanent cages spiders caused 100% BPH mortality at an average predator/prey ratio of 1:5 to 1:14. At a ratio of 1:18 or higher there was some BPH survival in cages.
Resumo:
Interactions between the immature stages of Diadegma semiclausum, an endolarval parasitoid of Plutella xylostella, and the fungal entomopathogen Beauveria bassiana were investigated in the laboratory. Detrimental effects of B. bassiana on D. semiclausum cocoon production and adult parasitoid emergence increased with increasing pathogen concentration and some parasitoid larvae became infected by B. bassiana within hosts. The negative impact of B. bassiana on D. semiclausum cocoon production decreased as temporal separation between parasitism and pathogen exposure increased. Adult parasitoid emergence was significantly compromised by the highest rates of B. bassiana tested even when exposure of host larvae to the pathogen was delayed until one day before predicted parasitoid cocoon formation. Parasitoid pupae were infected by the pathogen in all B. bassiana treatments which did not preclude their development. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Spider toxins that target potassium channels constitute a new class of pharmacological tools that can be used to probe the structure and function of these channels at the molecular level. The limited studies performed to date indicate that these peptide toxins may facilitate the analysis of K+ channels that have proved insensitive to peptide inhibitors isolated from other animal sources. Thus far, two classes of K+ channel-selective spider toxins have been isolated, sequenced, and pharmacologically characterised - the hanatoxins (HaTx) from Grammastola spatulata and heteropodatoxins (HpTx) from Heteropoda venatoria. The hanatoxins block Kv2.1 and Kv4.2 voltage-gated K+ channels. In Kv2.1 K+ channels this occurs as a consequence of a depolarising shift in the voltage dependence of activation and not by occlusion of the channel pore. These toxins show minimal sequence homology with other peptide inhibitors of K+ channels, but they do share some homology with other ion channel toxins from spiders, particularly with regard to the spacing between cysteine residues. We have recently isolated three K+ channel antagonists from the venom of the Australian funnel-web spider Hadronyche versuta; at least two of these toxins are likely to constitute a new class of spider toxins active on K+ channels as they are approximately twice as large as HaTx and HpTx.
Resumo:
The encyrtid Coccidoxenoides perminutus is a widely distributed parasitoid of citrus mealybug (Planococcus citri). Worldwide, it has been implicated in successful biocontrol in only a few widely separated localities. C perminutus contributes little to control P. citri in field situations in south-east Queensland, Australia, but invades insectary cultures and reduces mealybug populations considerably under these controlled conditions. This discrepancy between poor field performance and good performance under controlled conditions was investigated to establish whether climatic factors inhibit the field performance of this species in the biological control of P. citri. Subsequent laboratory examination of the influence of varied humidities and temperatures on the activity levels and survival of C perminutus revealed a low tolerance for high saturation deficits (i.e., low % RH at high T degreesC) with reduced reproductive output. The influence of different food sources on adult survival and reproduction was also quantified, to establish if the adverse effects of climate could be overcome by supplementing adult diet. Neither honeydew from their mealybug hosts nor nectar from Alphitonia flowers significantly enhanced parasitoid survival. A subsequent test of five nectar species revealed a significant difference in their influence on C. perminutus survival and reproduction, with only Alpinia zerumbet proving to be as suitable as honey. The floral species that proved suitable in the laboratory need to be checked for their attractiveness to C perminutus in the field and for their ability to enhance the survival and reproductive output of parasitoids. This information suggests that the prevailing dry conditions in south-east Queensland citrus-growing areas apparently impede successful biological control of P. citri by C perminutus, but possibilities are available for habitat manipulation (by providing suitable nectar sources for adult parasitoids) to conserve and enhance C perminutus activity in the field. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Spiders are among the most abundant predators recorded in grain crops in Australia. They are voracious predators, and combined with their high abundance, may play an important role in the reduction of pest populations. The significance of spider assemblages as biological control agents of key pests such as Helicoverpa spp. in Australian agroecosystems is largely unknown. A thorough inventory was made of the spider fauna inhabiting unsprayed soybean fields at Gatton, south-east Queensland. One-hundred-and-two morphospecies from 28 families were collected using vacuum sampling and pitfall traps across two summer seasons (2000-01, 2001-02). No-choice feeding tests in the laboratory, using eggs and larvae of Helicoverpa armigera (Hubner) as prey, were used to ascertain the predatory potential of each spider group. The field-collected spider assemblage ate on average 2.4 (+/-0.7 standard error) to 5.0 (+/-0.8) eggs per 24 h per spider (10-25% of those available), depending on level of starvation. Clubionidae were the only spiders to readily consume eggs in the laboratory (mean of 18.4 +/- 1.5 eggs per starved spider and 8.2 +/- 3.9 per non-starved spider after 24 h). Starved spiders consumed 9.4 (+/- 0.1) first-instar larvae per 24 h per spider (90% of those available). This information was combined with field observations and literature from Australian and overseas studies to assess the potential of spider groups as predators of Helicoverpa spp. Lycosidae, Clubionidae, Oxyopidae, Salticidae and Thomisidae have the capacity to contribute to control of Helicoverpa spp.
Resumo:
Ballooning is a form of aerial movement practiced by most miniature and some adult spiders. Very few studies have investigated the composition and rate of spider ballooning in Australian agroecosystems. Water traps were used to compare ballooning rates in irrigated soybean crops and nearby non-crop areas in southeast Queensland over two summer seasons. The highest ballooning rate (14.8 spiders/m(2) per day) was recorded in a soybean field, non-crop areas (7.0 spiders/m(2) per day) and a dry land mungbean field (6.8 spiders/m(2) per day) having similar rates. Spider ballooning in soybean increased throughout the season and showed three peaks and intervening troughs. A similar pattern in ballooning peaks was observed in non-crop areas however the numbers were lower. Peaks in ballooning activity where synchronised across habitat types and some spider groups. Composition of the ballooning fauna was different from that of the ground-dwelling fauna, some families being present in both. Ballooning is an important behaviour in terms of population dynamics for a number of spider groups in soybean and the implications for pest control are discussed. (C) 2004 Elsevier BN. All rights reserved.
Resumo:
Many models have been advanced to suggest how different expressions of sociality have evolved and are maintained. However these models ignore the function of groups for the particular species in question. Here we present a new perspective on sociality where the function of the group takes a central role. We argue that sociality may have primarily a reproductive, protective, or foraging function, depending on whether it enhances the reproductive, protective or foraging aspect of the animal's life (sociality may serve a mixture of these functions). Different functions can potentially cause the development of the same social behaviour. By identifying which function influences a particular social behaviour we can determine how that social behaviour will change with changing conditions, and which models are most pertinent. To test our approach we examined spider sociality, which has often been seen as the poor cousin to insect sociality. By using our approach we found that the group characteristics of eusocial insects is largely governed by the reproductive function of their groups, while the group characteristics of social spiders is largely governed by the foraging function of the group. This means that models relevant to insects may not be relevant to spiders. It also explains why eusocial insects have developed a strict caste system while spider societies are more egalitarian. We also used our approach to explain the differences between different types of spider groups. For example, differences in the characteristics of colonial and kleptoparasitic groups can be explained by differences in foraging methods, while differences between colonial and cooperative spiders can be explained by the role of the reproductive function in the formation of cooperative spider groups. Although the interactions within cooperative spider colonies are largely those of a foraging society, demographic traits and colony dynamics are strongly influenced by the reproductive function. We argue that functional explanations help to understand the social structure of spider groups and therefore the evolutionary potential for speciation in social spiders.
Resumo:
Insects have a much smaller repertoire of voltage-gated calcium (Ca-v) channels than vertebrates. Drosophila melanogaster harbors only a single ortholog of each of the vertebrate Ca(v)1, Ca(v)2, and Ca(v)3 subtypes, although its basal inventory is expanded by alternative splicing and editing of Ca-v channel transcripts. Nevertheless, there appears to be little functional plasticity within this limited panel of insect Ca-v channels, since severe loss-of-function mutations in genes encoding the pore-forming a, subunits in Drosophila are embryonic lethal. Since the primary role of spider venom is to paralyze or kill insect prey, it is not surprising that most, if not all, spider venoms contain peptides that potently modify the activity of these functionally critical insect Ca-v channels. Unfortunately, it has proven difficult to determine the precise ion channel subtypes recognized by these peptide toxins since insect Ca-v channels have significantly different pharmacology to their vertebrate counterparts, and cloned insect Ca-v channels are not available for electrophysiological studies. However, biochemical and genetic studies indicate that some of these spider toxins might ultimately become the defining pharmacology for certain subtypes of insect Ca-v channels. This review focuses on peptidic spider toxins that specifically target insect Ca-v channels. In addition to providing novel molecular tools for ion channel characterization, some of these toxins are being used as leads to develop new methods for controlling insect pests. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The chalcid, Oomyzus sokolowskii Kurdjumov has been recorded in many parts of the world as a major larval-pupal, gregarious endoparasitoid of the diamondback moth, Plutella xylostella (Linnaeus), a serious pest of brassica vegetable crops worldwide. This study investigated intraspecific variation between two populations of O. sokiolowskii, one from Cape Verde Islands, West Africa and the other from Hangzhou, China. In all crosses and backcrosses between the two geographical populations, the numbers of progeny and sex ratio of progeny were similar to those obtained within each of the populations, demonstrating complete reproductive compatibility between the two populations. The two populations showed similar responses to temperature with respect to development time and survival of immature stages. Observations on the interactions between the two O. sokolowskii populations and Cotesia plutellae (Kurdjumov), another major parasitoid of P. xylostella, showed that neither population could achieve successful parasitism of P. xylostella larvae already parasitized by C. plutellac. However, both O. sokolowskii populations could achieve hyperparasitism by ovipositing into a mid-late stage larva of C. plutellae developing inside the primary host. Contrary to earlier reports, no evidence of intraspecific variations in ability to hyperparasitize between these two populations of O. sokolowskii was found.
Resumo:
Attentional bias to fear-relevant animals was assessed in 69 participants not preselected on self-reported anxiety with the use of a dot probe task showing pictures of snakes, spiders, mushrooms, and flowers. Probes that replaced the fear-relevant stimuli (snakes and spiders) were found faster than probes that replaced the non-fear-relevant stimuli, indicating an attentional bias in the entire sample. The bias was not correlated with self-reported state or trait anxiety or with general fearfulness. Participants reporting higher levels of spider fear showed an enhanced bias to spiders, but the bias remained significant in low scorers. The bias to snake pictures was not related to snake fear and was significant in high and low scorers. These results indicate preferential processing of fear-relevant stimuli in an unselected sample.
Resumo:
Objectives: To identify and demonstrate necrotizing dermatitis in infancy; an uncommon, puzzling syndrome, in which anecdotal reporting and personal experience indicates that one third of cases may require skin grafting. Much informed discussion about the pathogenesis of this distressing syndrome centres on the role of spider envenomation; and in particular on the speculative role of the Australian White-tailed spider, Lampona cylindrata. Methods: We present here six cases of necrotizing dermatitis treated surgically at the Royal Children's Hospital and Mater Children's Hospital in Brisbane over the period from 1991 to 1999. Clinical history, surgical details and pathological investigations were reviewed in each case. Microbiological investigation of necrotic ulcers included standard aerobic and anaerobic culture. Result: Nocardia and Staphylococcus were cultured in two cases, but no positive bites were witnessed and no spiders were identified by either the children or their parents. All cases were treated with silver sulphadiazine creme. Two of the infants required general anaesthesia, excision debridement and split skin grafting. The White-tailed spider, Lampona cylindrata, does not occur in Queensland, but Lampona murina does; neither species has necrotizing components in its venom. Circumstantial evidence is consistent with this syndrome being due to invertebrate envenomation, possibly following arachnid bites. Conclusion: In our experience there is insufficient evidence to impute a specific genus as the cause, at this stage of scientific knowledge. If the offending creature is a spider, we calculate that the syndrome of necrotizing dermatitis occurs in less than 1 in 5000 spider bites.
Resumo:
The solution structure of robustoxin, the lethal neurotoxin from the Sydney funnel-web spider Atrax robustus, has been determined from 2D H-1 NMR data, Robustoxin is a polypeptide of 42 residues cross-linked by four disulphide bonds, the connectivities of which were determined from NMR data and trial structure calculations to be 1-15, 8-20, 14-31 and 16-42 (a 1-4/2-6/3-7/5-8 pattern), The structure consists of a small three-stranded, anti-parallel beta-sheet and a series of interlocking gamma-turns at the C-terminus. It also contains a cystine knot, thus placing it in the inhibitor cystine knot motif family of structures, which includes the omega-conotoxins and a number of plant and animal toxins and protease inhibitors. Robustoxin contains three distinct charged patches on its surface, and an extended loop that includes several aromatic and non-polar residues, Both of these structural features may play a role in its binding to the voltage-gated sodium channel. (C) 1997 Federation of European Biochemical Societies.
Resumo:
To aid in the development of artificial diets for mass rearing parasitioids, we investigated the anatomical changes in the digestive tract during feeding behaviour of larval Trichogramma australicum (Hymenoptera: Trichogrammatidae). Larvae begin to feed immediately upon eclosion and feed continuously for 4 h until replete. Feeding is characterised by rhythmic muscle contractions (ca 1 per s) of the pharynx. Contractions of the pharyngeal dilator muscles lift the roof of the lobe-shaped pharynx away from the floor of the chamber, opening the mouth and pumping food into the pharyngeal cavity. Another muscle contraction occurs about 0.5 s later, forcing the bolus of food through the oesophagus and into the midgut. The junction of fore- and midgut is marked by a cardiac valve. The midgut occupies most of the body cavity and is lined with highly vacuolated, flattened cells and a dispersed layer of muscle cells. In the centre of the midgut, food has the appearance of host egg contents. Food near the midgut epithelial cells has a finer, more homogeneous appearance. This change in the physical properties of the gut contents is indicative of the digestion process. In the prepupa, where digestion is complete, the entire gut contents have this appearance. After eclosion, the vitelline membrane remains attached to the posterior end of the larva. We believe this attachment to be adaptive in two ways: (1) to anchor the larva against the movements of its anterior portion, thereby increasing the efficiency of foraging within the egg, and (2) to prevent a free-floating membrane from clogging the mouthparts during ingestion. 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The salticid spider Cosmophasis bitaeniata preys on the larvae of the green tree ant Oecophylla smaragdina. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) reveal that the cuticle of C. bitaeniata mimics the mono- and dimethylalkanes of the cuticle of its prey. Recognition bioassays with extracts of the cuticular hydrocarbons of ants and spiders revealed that foraging major workers did not respond aggressively to the extracts of the spiders or conspecific nestmates, but reacted aggressively to conspecific nonnestmates. Typically, the ants either failed to react (as with control treatments with no extracts) or they reacted nonaggressively as with conspecific nestmates. These data indicate that the qualitative chemical mimicry of ants by C. bitaeniata allows the spiders to avoid detection by major workers of O. smaragdina.
Resumo:
A family of potent insecticidal toxins has recently been isolated from the venom of Australian funnel web spiders. Among these is the 37-residue peptide omega-atracotoxin-HV1 (omega-ACTX-HV1) from Hadronyche versuta. We have chemically synthesized and folded omega-ACTX-HV1, shown that it is neurotoxic, ascertained its disulphide bonding pattern, and determined its three-dimensional solution structure using NMR spectroscopy. The structure consists of a solvent-accessible beta-hairpin protruding from a disulphide-bonded globular core comprising four beta-turns. The three intramolecular disulphide bonds form a cystine knot motif similar to that seen in several other neurotoxic peptides. Despite limited sequence identity, omega-ACTX-HV1 displays significant structural homology with the omega-agatoxins and omega-conotoxins, both of which are vertebrate calcium channel antagonists; however, in contrast with these toxins, we show that omega-ACTX-HV1 inhibits insect, but not mammalian, voltage-gated calcium channel currents.