6 resultados para palmitate
em University of Queensland eSpace - Australia
Resumo:
Nonalcoholic fatty liver disease is the most common of all liver diseases. The hepatic disposition [H-3]palmitate and its low-molecular-weight metabolites in perfused normal and steatotic rat liver were studied using the multiple indicator dilution technique and a physiologically based slow diffusion/bound pharmacokinetic model. The steatotic rat model was established by administration of 17alpha-ethynylestradiol to female Wistar rats. Serum biochemistry markers and histology of treated and normal animals were assessed and indicated the presence of steatosis in the treatment group. The steatotic group showed a significantly higher alanine aminotransferase-to-aspartate aminotransferase ratio, lower levels of liver fatty acid binding protein and cytochrome P-450, as well as microvesicular steatosis with an enlargement of sinusoidal space. Hepatic extraction for unchanged [H-3]palmitate and production of low-molecular-weight metabolites were found to be significantly decreased in steatotic animals. Pharmacokinetic analysis suggested that the reduced extraction and sequestration for palmitate and its metabolites was mainly attributed to a reduction in liver fatty acid binding protein in steatosis.
Resumo:
Saturated fat plays a role in common debilitating diseases such as obesity, type 2 diabetes, and coronary heart disease. It is also clear that certain fatty acids act as regulators of metabolism via both direct and indirect signalling of target tissues. As the molecular mechanisms of saturated fatty acid signalling in the liver are poorly defined, hepatic gene expression analysis was undertaken in a human hepatocyte cell line after incubation with palmitate. Profiling of mRNA expression using cDNA microarray analysis revealed that 162 of approximately 18,000 genes tested were differentially expressed after incubation with palmitate for 48 h. Altered transcription profiles were observed in a wide variety of genes, including genes involved in lipid and cholesterol transport, cholesterol catabolism, cell growth and proliferation, cell signalling, P-oxidation, and oxidative stress response. While palinitate signalling has been examined in pancreatic beta-cells, this is the first report showing that palmitate regulates expression of numerous genes via direct molecular signalling mechanisms in liver cells. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
Understanding the driving forces for the hepatic uptake of endogenous and exogenous substrates in isolated cells and organs is fundamental to describing the underlying hepatic physiology/pharmacology. In this study we investigated whether uptake of plasma protein-bound [H-3]-palmitate across the hepatocyte wall is governed by the transmembrane electrical potential difference (PD). Uptake was studied in isolated hepatocytes and isolated perfused rat livers (IPL). Protein-binding and vasoactive properties of the different perfusates were determined using in vitro heptane/buffer partitioning studies and the multiple indicator dilution (MID) technique in the IPL, respectively. Altering hepatocyte PD by perfusate ion substitution resulted in either a substantial depolarization (-14 +/- 1 mV, n = 12, mean +/- S.E., substituting choline for Na+) or hyperpolarization (-46 +/- 3 mV, n = 12, mean +/- S.E., substituting nitrate for Cl-). Perfusate ion substitution also affected the equilibrium binding constant for the palmitate-albumin complex. IPL studies suggested that, other than with gluconate buffer, hepatic [H-3]-palmitate extraction was not affected by the buffer used, implying PD was not a determinant of extraction. [H-3]-Palmitate extraction was much lower (p < 0.05) when gluconate was substituted for Cl- ion. This work contrasts with that for the extraction of [H-3]-alanine where hepatic extraction fraction was significantly reduced during depolarization. Changing the albumin concentration did not affect hepatocyte PD, and [H-3]-palmitate clearance into isolated hepatocytes was not affected by the buffers used. MID studies with vascular and extravascular references revealed that, with the gluconate substituted buffer, the extravascular volume possibly increased the diffusional path length thus explaining reduced [H-3]-palmitate extraction fraction in the IPL.
Resumo:
H-ras is anchored to the plasma membrane by two palmitoylated cysteine residues, Cys181 and Cys184, operating in concert with a C-terminal S-farnesyl cysteine carboxymethylester. Here we demonstrate that the two palmitates serve distinct biological roles. Monopalmitoylation of Cys181 is required and sufficient for efficient trafficking of H-ras to the plasma membrane, whereas monopallmitoylation of Cys184 does not permit efficient trafficking beyond the Golgi apparatus. However, once at the plasma membrane, monopalmitoylation of Cys184 supports correct GTP-regulated lateral segregation of H-ras between cbolesterol-dependent and cholesterol-independent microdomains. In contrast, monopallmitoylation of Cys181 dramatically reverses H-ras lateral segregation, driving GTP-loaded H-ras into cholesterol-dependent microdomains. Intriguingly, the Cys181 monopalmitoylated H-ras anchor emulates the GTP-regulated microdomain interactions of N-ras. These results identify N-ras as the Ras isoform that normally signals from lipid rafts but also reveal that spacing between palmitate and prenyl groups influences anchor interactions with the lipid bilayer. This concept is further supported by the different plasma membrane affinities of the monopalmitoylated anchors: Cys181-palmitate is equivalent to the dually palmitoylated wild-type anchor, whereas Cys184-pahnitate is weaker. Thus, membrane affinity of a pallmitoylated anchor is a function both of the hydrophobicity of the lipid moieties and their spatial organization. Finally we show that the plasma membrane affinity of monopahnitoylated anchors is absolutely dependent on cholesterol, identifying a new role for cholesterol in promoting interactions with the raft and nonraft plasma membrane.
Resumo:
Objective:. There is evidence from in vitro studies that fatty acids can inhibit glucose uptake in liver. However, it is uncertain whether this happens in vivo when the liver is exposed to high levels of glucose and insulin, in combination with fatty acids, after a mixed meal. This study determined the effects of a combination of fatty acids and insulin on glucokinase (GK) activity and glycolysis in primary rat hepatocytes. Methods: Hepatocytes were cultured with 15 mM glucose and 2 or 10 nM insulin in combination with the fatty acids palmitate, oleate, linoleate, eicosapentaenoic acid, or docosahexaenoic acid. Total GK activity and the proportion of GK in the,active, unbound state were measured to determine the effect of fatty acid on the activity and cellular localization of GK. Glucose phosphorylation and glycolysis were measured in intact cells. Lactate and pyruvate synthesis and the accumulation of ketone bodies were also estimated. Results: Palmitate and eicosapentaenoic acid lowered total GK activity in the presence of 2 nM insulin, but not with 10 nM insulin. In contrast, oleate, linoleate, and docosahexaenoic acid did not alter GK activity. None of the fatty acids tested inhibited glucose phosphorylation or glycolysis in intact rat hepatocytes. In addition, GK activity was unaffected by insulin concentration. Conclusion: Some fatty acids can act to inhibit GK activity in primary hepatocytes. However, there was no,evidence that this decrease in GK activity impaired glucose phosphorylation or glycolysis. Glucose and high concentrations of insulin, which promote glucose uptake, appear to counteract any inhibitory action of fatty acids. Therefore, the presence of fatty acids in a normal mixed meal is likely to have little effect on the capacity of the liver to take up, phosphorylate, and oxidize glucose. (C) 2006 Elsevier Inc. All rights reserved.