9 resultados para pacs: data handling techniques

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electricity market price forecast is a changeling yet very important task for electricity market managers and participants. Due to the complexity and uncertainties in the power grid, electricity prices are highly volatile and normally carry with spikes. which may be (ens or even hundreds of times higher than the normal price. Such electricity spikes are very difficult to be predicted. So far. most of the research on electricity price forecast is based on the normal range electricity prices. This paper proposes a data mining based electricity price forecast framework, which can predict the normal price as well as the price spikes. The normal price can be, predicted by a previously proposed wavelet and neural network based forecast model, while the spikes are forecasted based on a data mining approach. This paper focuses on the spike prediction and explores the reasons for price spikes based on the measurement of a proposed composite supply-demand balance index (SDI) and relative demand index (RDI). These indices are able to reflect the relationship among electricity demand, electricity supply and electricity reserve capacity. The proposed model is based on a mining database including market clearing price, trading hour. electricity), demand, electricity supply and reserve. Bayesian classification and similarity searching techniques are used to mine the database to find out the internal relationships between electricity price spikes and these proposed. The mining results are used to form the price spike forecast model. This proposed model is able to generate forecasted price spike, level of spike and associated forecast confidence level. The model is tested with the Queensland electricity market data with promising results. Crown Copyright (C) 2004 Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents load profiles of electricity customers, using the knowledge discovery in databases (KDD) procedure, a data mining technique, to determine the load profiles for different types of customers. In this paper, the current load profiling methods are compared using data mining techniques, by analysing and evaluating these classification techniques. The objective of this study is to determine the best load profiling methods and data mining techniques to classify, detect and predict non-technical losses in the distribution sector, due to faulty metering and billing errors, as well as to gather knowledge on customer behaviour and preferences so as to gain a competitive advantage in the deregulated market. This paper focuses mainly on the comparative analysis of the classification techniques selected; a forthcoming paper will focus on the detection and prediction methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Online geographic information systems provide the means to extract a subset of desired spatial information from a larger remote repository. Data retrieved representing real-world geographic phenomena are then manipulated to suit the specific needs of an end-user. Often this extraction requires the derivation of representations of objects specific to a particular resolution or scale from a single original stored version. Currently standard spatial data handling techniques cannot support the multi-resolution representation of such features in a database. In this paper a methodology to store and retrieve versions of spatial objects at, different resolutions with respect to scale using standard database primitives and SQL is presented. The technique involves heavy fragmentation of spatial features that allows dynamic simplification into scale-specific object representations customised to the display resolution of the end-user's device. Experimental results comparing the new approach to traditional R-Tree indexing and external object simplification reveal the former performs notably better for mobile and WWW applications where client-side resources are limited and retrieved data loads are kept relatively small.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel application of fuzzy logic to web data mining for two basic problems of a website: popularity and satisfaction. Popularity means that people will visit the website while satisfaction refers to the usefulness of the site. We will illustrate that the popularity of a website is a fuzzy logic problem. It is an important characteristic of a website in order to survive in Internet commerce. The satisfaction of a website is also a fuzzy logic problem that represents the degree of success in the application of information technology to the business. We propose a framework of fuzzy logic for the representation of these two problems based on web data mining techniques to fuzzify the attributes of a website.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research in conditioning (all the processes of preparation for competition) has used group research designs, where multiple athletes are observed at one or more points in time. However, empirical reports of large inter-individual differences in response to conditioning regimens suggest that applied conditioning research would greatly benefit from single-subject research designs. Single-subject research designs allow us to find out the extent to which a specific conditioning regimen works for a specific athlete, as opposed to the average athlete, who is the focal point of group research designs. The aim of the following review is to outline the strategies and procedures of single-subject research as they pertain to.. the assessment of conditioning for individual athletes. The four main experimental designs in single-subject research are: the AB design, reversal (withdrawal) designs and their extensions, multiple baseline designs and alternating treatment designs. Visual and statistical analyses commonly used to analyse single-subject data, and advantages and limitations are discussed. Modelling of multivariate single-subject data using techniques such as dynamic factor analysis and structural equation modelling may identify individualised models of conditioning leading to better prediction of performance. Despite problems associated with data analyses in single-subject research (e.g. serial dependency), sports scientists should use single-subject research designs in applied conditioning research to understand how well an intervention (e.g. a training method) works and to predict performance for a particular athlete.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major task of traditional temporal event sequence mining is to find all frequent event patterns from a long temporal sequence. In many real applications, however, events are often grouped into different types, and not all types are of equal importance. In this paper, we consider the problem of efficient mining of temporal event sequences which lead to an instance of a specific type of event. Temporal constraints are used to ensure sensibility of the mining results. We will first generalise and formalise the problem of event-oriented temporal sequence data mining. After discussing some unique issues in this new problem, we give a set of criteria, which are adapted from traditional data mining techniques, to measure the quality of patterns to be discovered. Finally we present an algorithm to discover potentially interesting patterns.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Non-technical losses (NTL) identification and prediction are important tasks for many utilities. Data from customer information system (CIS) can be used for NTL analysis. However, in order to accurately and efficiently perform NTL analysis, the original data from CIS need to be pre-processed before any detailed NTL analysis can be carried out. In this paper, we propose a feature selection based method for CIS data pre-processing in order to extract the most relevant information for further analysis such as clustering and classifications. By removing irrelevant and redundant features, feature selection is an essential step in data mining process in finding optimal subset of features to improve the quality of result by giving faster time processing, higher accuracy and simpler results with fewer features. Detailed feature selection analysis is presented in the paper. Both time-domain and load shape data are compared based on the accuracy, consistency and statistical dependencies between features.