69 resultados para p21 31C>A polymorphism
em University of Queensland eSpace - Australia
Resumo:
We report the clinical characteristics of a schizophrenia sample of 409 pedigrees-263 of European ancestry ( EA) and 146 of African American ancestry ( AA)-together with the results of a genome scan ( with a simple tandem repeat polymorphism interval of 9 cM) and follow-up fine mapping. A family was required to have a proband with schizophrenia ( SZ) and one or more siblings of the proband with SZ or schizoaffective disorder. Linkage analyses included 403 independent full-sibling affected sibling pairs ( ASPs) ( 279 EA and 124 AA) and 100 all-possible half-sibling ASPs ( 15 EA and 85 AA). Nonparametric multipoint linkage analysis of all families detected two regions with suggestive evidence of linkage at 8p23.3-q12 and 11p11.2-q22.3 ( empirical Z likelihood-ratio score [ Z(lr)] threshold >= 2.65) and, in exploratory analyses, two other regions at 4p16.1-p15.32 in AA families and at 5p14.3-q11.2 in EA families. The most significant linkage peak was in chromosome 8p; its signal was mainly driven by the EA families. Z(lr) scores >= 2.0 in 8p were observed from 30.7 cM to 61.7 cM ( Center for Inherited Disease Research map locations). The maximum evidence in the full sample was a multipoint Z(lr) of 3.25 ( equivalent Kong-Cox LOD of 2.30) near D8S1771 ( at 52 cM); there appeared to be two peaks, both telomeric to neuregulin 1 ( NRG1). There is a paracentric inversion common in EA individuals within this region, the effect of which on the linkage evidence remains unknown in this and in other previously analyzed samples. Fine mapping of 8p did not significantly alter the significance or length of the peak. We also performed fine mapping of 4p16.3-p15.2, 5p15.2-q13.3, 10p15.3-p14, 10q25.3-q26.3, and 11p13-q23.3. The highest increase in Z(lr) scores was observed for 5p14.1-q12.1, where the maximum Z(lr) increased from 2.77 initially to 3.80 after fine mapping in the EA families.
Resumo:
Human N-acetyltransferase type 1 (NAT1) catalyses the N- or O-acetylation of various arylamine and heterocyclic amine substrates and is able to bioactivate several known carcinogens. Despite wide inter-individual variability in activity, historically, NAT1 was considered to be monomorphic in nature. However, recent reports of allelic variation at the NAT1 locus suggest that it may be a polymorphically expressed enzyme. In the present study, peripheral blood mononuclear cell NAT1 activity in 85 individuals was found to be bimodally distributed with approximately 8% of the population being slow acetylators. Subsequent sequencing of the individuals having slow acetylator status showed all to have either a (CT)-T-190 or G(560)A base substitution located in the protein encoding region of the NAT1 gene. The (CT)-T-190 base substitution changed a highly conserved Arg(64), which others have shown to be essential for fully functional NAT1 protein. The (CT)-T-190 mutation has not been reported previously and we have named it NAT1*17. The G(560)A mutation is associated with the base substitutions previously observed in the NAT1*10 allele and this variant (NAT1*14) encodes for a protein with reduced acetylation capacity. A novel method using linear PCR and dideoxy terminators was developed for the detection of NAT1*14 and NAT1*17. Neither of these variants was found in the rapid acetylator population. We conclude that both the (CT)-T-190 (NAT1*17) and G(560)A (NAT1*14) NAT1 structural variants are involved in a distinct NAT1 polymorphism. Because NAT1 can bioactivate several carcinogens, this polymorphism may have implications for cancer risk in individual subjects. (C) 1998 Chapman & Hall Ltd.
Resumo:
Plant cyanogenesis, the release of cyanide from endogenous cyanide-containing compounds, is an effective herbivore deterrent. This paper characterises cyanogenesis in the Australian tree Eucalyptus polyanthemos Schauer subsp. vestita L. Johnson and K. Hill for the first time. The cyanogenic glucoside prunasin ((R)-mandelonitrile beta-D-glucoside) was determined to be the only cyanogenic compound in E. polyanthemos foliage. Two natural populations of E. polyanthernos showed quantitative variation in foliar prumasin concentration, varying from zero (i.e. acyanogenic) to 2.07 mg CN g(-1) dry weight in one population and from 0.17 to 1.98 mg CN g(-1) dry weight in the other. No significant difference was detected between the populations with respect to the mean prunasin concentration or the degree of variation in foliar prunasin, despite significant differences in foliar nitrogen. Variation between individuals was also observed with respect to the capacity of foliage to catabolise prunasin to form cyanide. Moreover, variation in this capacity generally correlated with the amount of prunasin in the tissue, suggesting genetic linkage between prunasin and beta-glucosidase. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The genetic mechanisms responsible for the formation of adrenocortical adenomas which autonomously produce aldosterone are largely unknown, The adrenal renin-angiotensin system has been implicated in the pathophysiology of these tumours, Angiotensin-converting enzyme (ACE) catalyses the generation of angiotensin II, and the insertion/deletion (I/D) polymorphism of the ACE gene regulates up to 50% of plasma and cellular ACE variability in humans. We therefore examined the genotypic and allelic frequency distributions of the ACE gene I/D polymorphism in 55 patients with aldosterone-producing adenoma, APA, (angiotensin-unresponsive APA n = 28, angiotensin-responsive APA n = 27), and 80 control subjects with no family history of hypertension, We also compared the ACE gene I/D polymorphism allelic pattern in matched tumour and peripheral blood DNA in the 55 patients with APA, The frequency of the D allele was 0.518 and 0.512 and the I allele was 0.482 and 0.488 in the APA and control subjects respectively, Genotypic and allelic frequency analysis found no significant differences between the groups, Examination of the matched tumour and peripheral blood DNA samples revealed the loss of the insertion allele in four of the 25 patients who were heterozygous for the ACE I/D genotype. The I/D polymorphism of the ACE gene does not appear to contribute to the biochemical and phenotypic characteristics of APA, however, the deletion of the insertion allele of the ACE gene I/D polymorphism in 16% of aldosterone-producing adenomas may represent the loss of a tumour suppressor gene/s or other genes on chromosome 17q which may contribute to tumorigenesis in APA.
Resumo:
Histone deacetylase inhibitors show promise as chemotherapeutic agents and have been demonstrated to block proliferation in a wide range of tumor cell lines. Much of this antiproliferative effect has been ascribed to the up-regulated expression of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1). In this article, we report that p21 expression was up-regulated by relatively low doses of the histone deacetylase inhibitor azelaic bishydroxamic acid (ABHA) and correlated with a proliferative arrest. Higher doses of ABHA were cytotoxic. Cells that did not up-regulate p21 expression were hypersensitive to killing by ABHA and died via apoptosis, whereas up-regulation of p21 correlated with reduced sensitivity and a block in the apoptotic mechanism, and these cells seemed to die by necrosis. Using isogenic p21(+/+) and p21(-/-) cell lines and direct inhibition of caspase activity, we demonstrate that the reduced sensitivity to killing by ABHA is a consequence of inhibition of apoptosis by up-regulated p21 expression. These data indicate the enormous potential of therapeutic strategies that bypass the cytoprotective effect of p21 and act on the same molecular targets as the histone deacetylase inhibitors.
Resumo:
This study determined the frequencies of a G-to-A transition (S/N167) polymorphism in exon 4 of the parkin gene in Australian Parkinson's disease patients and control subjects. The genotype of each subject was determined using the polymerase chain reaction and restriction-fragment-length-polymorphism analysis. Overall, the A allele was significantly less common in the Parkinson's disease group (1.7%) compared with the control group (3.8%, OR = 0.43, 95% CI = 0.19-1.00, P < 0.05), although the frequency in the young onset Parkinson's disease group (6.6%) was not significantly different to controls. The A allele is less common in Australian Caucasian subjects compared to Japanese Parkinson's disease patients and appears to be under-represented in older-onset Parkinson's disease. <(c)> 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Inactivation of p16(INK4a) and/or activation of cyclin-dependent kinase-4 (CDK4) are strongly associated with both susceptibility and progression in melanoma. Activating CDK4 mutations prevent the binding and inhibition of CDK4 by p16(INK4a). A second, more indirect role for CDK4 is in late G(1), where It may sequester the inhibitors p27(KIP1) or p21(CIP1) away from CDK2, and in doing so upregulate the CDK2 activity necessary for cells to proceed completely through G(1) into S phase. As the pivotal residues around the most predominant R24C activating CDK4 mutation are invariant between CDK2 and CDK4, we speculated that the pivotal arginine (position 22 in CDK2), or a nearby residue, may be mutated in some melanomas, resulting in the diminution of its binding and inhibition by p27(KIP1) or p21(CIP1). However, except for a silent polymorphism, we detected no variants within this region of the CDK2 gene in 60 melanoma cell lines. Thus, if CDK2 activity is dysregulated in melanoma it is likely to occur by a means other than mutations causing loss of direct inhibition. We also examined the expression of the CDK2 gene in melanoma cell lines, to assess its possible co-regulation with the gene for the melanocyte-lineage antigen pmel17, which maps less than 1 kb away in head to head orientation with CDK2 and may be transcribed off the same bidirectional promoter. However, expression of the genes is not co-regulated. (C) 2001 Lippincott Williams & Wilkins.
Resumo:
Functional significance has been demonstrated in vitro for the exon 3 T-->C Tyr113His amino acid substitution polymorphism of the microsomal epoxide hydrolase (EPHX) gene. The higher activity or fast TT genotype was previously reported to be associated with an increased risk of ovarian cancer, and this association may reflect enhanced activation of endogenous or exogenous substrates to more reactive and mutagenic derivatives. Components of cigarette smoke are examples of exogenous substrates subject to such bioactivation, and smoking exposure may thus modify the risk associated with the EPHX polymorphism. We examined 545 cases of epithelial ovarian cancer and 287 unaffected controls for this EPHXT-C genetic variant to investigate whether, in the Australian population, the TT genotype was associated with (i) specific ovarian tumor characteristics; (ii) risk of ovarian cancer, overall or for specific subgroups; and (iii) risk of ovarian cancer in smokers specifically. Genotyping was carried out using the Perkin-Elmer ABI Prism 7700 Sequence Detection System for fluorogenic polymerase chain reaction allelic discrimination. Stratification of the ovarian cancer cases according to tumor behavior (low malignant potential or invasive), grade, stage, and p53 immunohistochemical status failed to show any heterogeneity with respect to the genotype defined by the EPHX polymorphism. There was a suggestion of heterogeneity with respect to histologic subtype (P= 0.03), largely due to a decreased frequency of the TT genotype in endometrioid tumors. EPHX genotype distribution did not differ significantly between unaffected controls and ovarian cancer cases (overall, low malignant potential, or invasive) either overall or after stratification by smoking status. However, the TT genotype was associated with a decreased risk of invasive ovarian cancer of the endometrioid subtype specifically (age-adjusted odds ratio = 0.38, 95% confidence interval=0.17-0.87). The results suggest that the proposed EPHX-mediated bioactivation of components of cigarette smoke to mutagenic forms is unlikely to be involved in the etiology of ovarian cancer in general but that a greater rate of EPHX-mediated detoxification may decrease the risk of endometrioid ovarian cancer. (C) 2001 Wiley-Liss, Inc.
Resumo:
Epidemiological studies suggest that ovarian cancer is an endocrine-related tumour, and progesterone exposure specifically may decrease the risk of ovarian cancer. To assess whether the progesterone receptor (PR) exon 4 valine to leucine amino acid variant is associated with specific tumour characteristics or with overall risk of ovarian cancer, we examined 551 cases of epithelial ovarian cancer and 298 unaffected controls for the underlying G-->T nucleotide substitution polymorphism. Stratification of the ovarian cancer cases according to tumour behaviour (low malignant potential or invasive), histology, grade or stage failed to reveal any heterogeneity with respect to the genotype defined by the PR exon 4 polymorphism. Furthermore, the genotype distribution did not differ significantly between ovarian cancer cases and unaffected controls. Compared with the GG genotype, the age-adjusted odds ratio (95% confidence interval) for risk of ovarian cancer was 0.78 (0.57-1.08) for the GT genotype, and 1.39 (0.47-4.14) for the TT genotype. In conclusion, the PR exon 4 codon 660 leucine variant encoded by the T allele does not appear to be associated with ovarian tumour behaviour, histology, stage or grade. This variant is also not associated with an increased risk of ovarian cancer, and is unlikely to be associated with a large decrease in ovarian cancer risk, although we cannot rule out a moderate inverse association between the GT genotype and ovarian cancer.
Resumo:
RAD51 colocalizes with both BRCA1 and BRCA2, and genetic variants in RAD51 would be candidate BRCA1/2 modifiers. We searched for RAD51 polymorphisms by sequencing 20 individuals. We compared the polymorphism allele frequencies between female BRCA1/2 mutation carriers with and without breast or ovarian cancer and between population-based ovarian cancer cases with BRCA1/2 mutations to cases and controls without mutations. We discovered two single nucleotide polymorphisms (SNPs) at positions 135 g-->c and 172 g-->t of the 5' untranslated region. In an initial group of BRCA1/2 mutation carriers, 14 (21%) of 67 breast cancer cases carried a c allele at RAD51:135 g-->c, whereas 8 (7%) of 119 women without breast cancer carried this allele. In a second set of 466 mutation carriers from three centers, the association of RAD51:135 g-->c with breast cancer risk was not confirmed. Analyses restricted to the 216 BRCA2 mutation carriers, however, showed a statistically significant association of the 135 c allele with the risk of breast cancer (adjusted odds ratio, 3.2; 95% confidence limit, 1.4-40). BRCA1/2 mutation carriers with ovarian cancer were only about one half as likely to carry the RAD51:135 g-->c SNP. Analysis of the RAD51:135 g-->c SNP in 738 subjects from an Israeli ovarian cancer case-control study was consistent with a lower risk of ovarian cancer among BRCA1/2 mutation carriers with the c allele. We have identified a RAD51 5' untranslated region SNP that may be associated with an increased risk of breast cancer and a lower risk of ovarian cancer among BRCA2 mutation carriers. The biochemical basis of this risk modifier is currently unknown.