5 resultados para oysters
em University of Queensland eSpace - Australia
Resumo:
We have estimated of the maximum radiation dose received from consuming an oyster at Hiroshima following the A-bomb detonation in 1945
Resumo:
Growth, Condition Index (CI) and survival of the pearl oysters, Pinctada maxima and R margaritifera, were measured in three size groups of oysters over 14 months at two dissimilar environments in the Great Barrier Reef lagoon. These were the Australian Institute of Marine Science (AIMS) in a mainland bay and Orpheus Island Research Station (OIRS) in coral reef waters. Temperature, suspended particulate matter (SPM) and particulate organic matter (POM) were monitored during the study. Temperature at AIMS fluctuated more widely than at OIRS both daily and seasonally, with annual ranges 20-31 degrees C and 22-30 degrees C, respectively. Mean SPM concentration at AIMS (11.1 mg l(-1)) was much higher than at OIRS (1.4 mg l(-1)) and fluctuated widely (2-60 mg l(-1)). Mean POM level was also substantially higher at AIMS, being 2.1 mg l(-1) compared with 0.56 mg l(-1) at OIRS. Von Bertalatiffy growth curve analyses showed that P. maxima grew more rapidly and to larger sizes than P. margaritifera at both sites. For the shell height (SH) of R maxima, growth index phi'=4.31 and 4.24, asymptotic size SHinfinity = 229 and 205 mm, and time to reach 120 mm SH (T-(120))= 1.9 and 2.1 years at AIMS and OIRS, respectively. While for P margaritifera, phi'=4.00 and 4.15, SHinfinity = 136 and 157 mm, and T-(120) = 2.5 and 3.9 years at AIMS and OIRS, respectively. R maxima had significantly lower growth rates and lower survival of small oysters during winter compared with summer. There were, however, no significant differences between the two sites in growth rates of P. maxima and final Cl values. In contrast, P. margaritifiera showed significant differences between sites and not seasons, with lower growth rates, survival of small oysters, final Cl values and asymptotic sizes at AIMS. The winter low temperatures, but not high SPM at AIMS, adversely affected P. maxima. Conversely, the high SPM levels at AIMS, but not temperature, adversely affected P. margaritifera. This was in accordance with earlier laboratory-based energetics studies of the effects of temperature and SPM on these two species. P maxima has potential to be commercially cultured in ca. > 25 degrees C waters with a wide range of SPM levels, including oligotrophic coral reef waters with appropriate particle sizes. It is possible to culture R margaritifera in turbid conditions, but its poor performance in these conditions makes commercial culture unlikely. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Marteilia sydneyi (Paramyxea) is the causative agent of QX disease in oysters. In spite of the economic impact of this disease, its origin and the precise reason(s) for its apparent spread in Australian waters are not yet known. Given such knowledge gaps, investigating the population genetic structure(s) of M. sydneyi populations could provide insights into the epidemiology and ecology of the parasite and could assist in its prevention and control. In this study, single strand conformation polymorphism (SSCP)-based analysis of a region (195 bp) of the first internal transcribed spacer (ITS-1) of ribosomal DNA was employed to investigate genetic variation within and among five populations of M. sydneyi from oysters from five different locations in eastern Australia. The analysis showed the existence of a genetic variant of M. sydneyi common to the Great Sandy Strait, and the Richmond and Georges Rivers, as distinct from variants at the Pimpama and Clarence Rivers. Together with historical and other information relating to the QX disease outbreaks in eastern Australia, the molecular findings support the proposal that the parasite originated in the Great Sandy Strait and/or Richmond River and then extended southward along the coast. From a technical perspective, the study demonstrated the usefulness of SSCP as a tool to study the population genetics and epidemiology of M. sydneyi. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
This study investigated the chromosome ploidy level of Marsupenaeus (Penaeus) japonicus (Bate) non-viable (unhatched) embryos and nauplii after exposure to 6-dimethylaminopurine (6-DMAP), timed to stop either polar body (PB) I, or PBI and II extrusion. Embryos from eight separate families or spawnings were exposed to 150 or 200 mu M 6-DMAP from 1- to 3-min post-spawning detection (psd) for a 4- to 5-min duration (timed to stop PBI extrusion). Separate aliquots of embryos from five of the same spawnings were also exposed to 200 mu M of 6-DMAP from 1- to 3-min psd for a 16-min duration (timed to stop both PBI and II extrusion). For one spawning, a third aliquot of embryos was exposed to 400 p M of 6-DMAP from 1- to 3-min psd for a 16-min duration (timed to stop both PBI and II extrusion). At 18-h psd, non-viable embryo and nauplii samples were taken separately for fluorescent activated cell sorting (FACS). FACS revealed that there were diploids and triploids among all treated non-viable embryos and nauplii. All control non-viable embryos and nauplii were diploid. Percentages of triploid induction for the 4- to 5-min and 16-min durations were not significantly different (P > 0.05). Additionally, no difference was found in the triploidy level of nonviable embryos compared to nauplii in these treatments. The percentage of triploid embryos and nauplii when exposed to 6-DMAP for a 4- to 5-min duration ranged from 29.57% to 99.23% (average 55.28 +/- 5.45%) and from 5.60% to 98.85% (average 46.70 +/- 7.20%), respectively. The percentage of triploid embryos and nauplii when exposed to 6-DMAP for a 16-min duration ranged from 11.71% to 98.96% (average 52.49 +/- 11.00%) and from 47.5% to 99.24% (average 79.38 +/- 5.24%), respectively. To our knowledge, this is the first documentation of successful PBI or PBI and II inhibition in shrimp. This study conclusively shows that treatment of M. japonicus embryos with 6-DMAP at 1- to 3-min pscl for either a 4- to 5-min duration (timed to stop PBl extrusion) or 16-min duration (timed to stop both PBI and II extrusion) results in viable triploid nauplii. (c) 2006 Elsevier B.V. All rights reserved.